期刊文献+

基于高阶统计理论和量子遗传算法的非线性盲源分离算法研究 被引量:6

RESEARCH OF NONLINEAR BLIND SOURCE SEPARATION ALGORITHM USING HIGHER ORDER STATISTICS AND QUANTUM GENETIC ALGORITHM
原文传递
导出
摘要 本文系统分析了非线性盲源分离的模型和现有算法,讨论了非线性盲源分离中解的存在性和唯一性,提出了基于高阶统计理论中联合累积量的非线性盲源分离算法,并采用量子遗传算法进行优化求解,仿真结果表明了算法的有效性。 This paper analyzes the model and algorithm of Nonlinear Blind Source Separation (NBSS) systematically, discusses the existence and uniqueness of solution of NBSS, put forwards a novel NBSS algorithm based on cross-cumulates in higher order statistics, and uses Quantum Genetic Algorithm (QGA) to acquire its optimum solution. The simulation result demonstrates the effectiveness of the algorithm.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2004年第1期41-46,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60171029)
关键词 量子遗传算法 高阶统计理论 非线性盲源分离算法 信号分离 随机变量 信号处理 Signal Processing, Nonlinear Blind Source Separation, High-Order Statistics, Genetic Algorithm, Quantum Genetic Algorithm
  • 相关文献

参考文献13

  • 1罗鹏飞 张文明 等.随机信号分析[M].国防科技大学出版社,2000..
  • 2沈永欢.实用数学手册[M].科学出版社,2000..
  • 3杨俊安,李斌,庄镇泉,钟子发.基于量子遗传算法的盲源分离算法研究[J].小型微型计算机系统,2003,24(8):1518-1523. 被引量:24
  • 4Burel G. Blind Separation of Sources: A Nonlinear Neural Algorithm. Neural Network, 1992, 5:937-947.
  • 5Yang H H, Amari S, Cichochi A. Information-Theoretic Approach to Blind Separation of Sources in Non-Linear Mixture. Signal Processing, 1998, 64:291-300.
  • 6Lee T W, Koehler B U. Blind Source Separation of Nonlinear Mixing Models. In: Proc of IEEE Neural Network and Signal Proeessing. Amelia Island, FL, 1997, 406-415.
  • 7Tan Y, Wang J, Zurada J M. Nonlinear Blind Source Separation Using a Radial Basis Function Network. IEEE Trans on Neural Network, 2001, 12:134-144.
  • 8Tan Y, Wang J. Nonlinear Blind Source Separation Using Higher Order Statistics and a Genetic Algorithm. IEEE Trans on Evolutionary Computation, 2001, 5: 600-612.
  • 9Pajunen P, Hyvaerinen A, Karhunen J. Nonlinear Blind Source Separation by Self-Organizing Maps. In: Progrees in Neural Information Processing: Proc of the International Conference on Neural Information Processing. New York: Springer-Verlag, 1996,Ⅱ:1207- 1210.
  • 10Hyvaerinen A, Pajtmen P. Nonlinear Independent Component Analysis: Existence and Uniqueness Results, Neural Network, 1999,12:429-439.

二级参考文献7

  • 1Kuk-Hyun Han. Genetic quantum algorithm and its application to combinatorial optimization problem[C]. IEEE Proc. Of the 2000 Congress on Evolutionary Computation, 1354~1360.
  • 2Yang Jun-an. Research & realization of image separation method based on independent component analysis & genetic algorithm[C].SPIE International Congress on Image and Graph 2002 SPIE Press, 575~582.
  • 3Narayanan A and Moore M. Quantum inspired genetic algorithms[C]. In:Proceedings of the 1996 IEE International Conference on Evolutionary Computation(ICEC96), IEEE Press, 41~46.
  • 4Perus M. Neuro-quantum parallelism in brain-mind and computers[J]. Informatica, 1996, 20: 173~183
  • 5Hyv arinen A. Independent component analysis:algorithms and applications[J]. Neural Networks, 2000, 13, 411~430.
  • 6Lee Te-won. Independent component analysis theory and applications[M]. Kluwer Academic Publishers, 1998.
  • 7Ventura D and Martinez T R. Initializing the amplitude distribution of a quantum state[J]. Foundations of Physics Letters,1999,12(6):547~559.

共引文献30

同被引文献43

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部