摘要
本文系统分析了非线性盲源分离的模型和现有算法,讨论了非线性盲源分离中解的存在性和唯一性,提出了基于高阶统计理论中联合累积量的非线性盲源分离算法,并采用量子遗传算法进行优化求解,仿真结果表明了算法的有效性。
This paper analyzes the model and algorithm of Nonlinear Blind Source Separation (NBSS) systematically, discusses the existence and uniqueness of solution of NBSS, put forwards a novel NBSS algorithm based on cross-cumulates in higher order statistics, and uses Quantum Genetic Algorithm (QGA) to acquire its optimum solution. The simulation result demonstrates the effectiveness of the algorithm.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2004年第1期41-46,共6页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金(No.60171029)