期刊文献+

LDPC码稀疏奇偶校验矩阵与硬判决解码算法建模

Modeling of a Hard-decision Decoding Algorithm and the Sparse Parity-check Matrix for LDPC Code
下载PDF
导出
摘要 提出了一种以奇偶校验和作为消息传递的LDPC码硬判决解码方案。该方案以奇偶校验方程是否满足约束为条件,从而决定接收分组中的错误位,并对错误位进行翻转。文中归纳了稀疏奇偶校验矩阵的描述,在此基础上引入校验树结构对解码方案进行可行性分析和描述。最后提出一种具体可实现的解码算法模型。 A hard-decision decoding algorithm for LDPC code is proposed, which chooses error bits from received block based on the condition whether the parity-check functions are satisfied or not, and then flips these error bits. Then the sparse parity-check matrix is described and the construction of parity-check tree is introduced to analyze and describe the decoding algorithm. Finally, an implementation of decoding algorithm is given.
作者 彭立 朱光喜
出处 《电讯技术》 北大核心 2004年第2期43-46,共4页 Telecommunication Engineering
基金 国家自然科学基金资助项目(60372067)
关键词 LDPC码 硬判决 稀疏奇偶校验矩阵 校验树 解码算法 信道编码 LDPC code Parity-check function Parity-check tree Decoding algorithm Modeling
  • 相关文献

参考文献5

  • 1[1]R G Gallager. Low-Density Parity-Check Codes[M]. MA: MIT. Press, 1963.
  • 2[3]D J C MacKay.Good error-correcting codes based on very sparse matrices[J]. IEEE Trans. Inform. Theory, 1999,45:399~431.
  • 3[4]V Sorokine, F R Kschischang, S Pasupathy.Gallager codes for CDMA applications - partⅠ: Generalizations, Constructions, and Performance Bounds[J].IEEE. Trans.Commun., 2000,48:1660~1668.
  • 4[5]Yu Kou, Shu Lin, Marc P C Fossorier. Low-Density Parity-Check Codes Based on Finite Geometries: A Rediscovery and New Results[J]. IEEE Tran. Inform. Theory , 2001,47(7):2711~2736.
  • 5[2]M Sipser, D A Spielman, Expander codes[J]. IEEE Trans. Inform.,Theory, 1996,42:1710~1722.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部