摘要
利用依赖于解的奇异非线性时间变换 ,把奇异微分系统转换为非奇异的常微系统 ,建立了奇异微分系统初值问题解的 (非 )存在性和惟一性及多解的存在性 .一阶和二阶奇异微分方程的初值问题的应用结果与Petio(2 0 0 0 )和Agarwal(1999)的结果相比 ,条件简单容易验证 ,且结论更详细 .
Through translating singular differential systems into regular ones with nonlinear transformation, the existence and uniqueness of solutions for the Cauchy problems of singular differential systems are studied. The results can be applied to Cauchy problems of sigular first-order and second-order singular differential equations. Some examples are given to illustrate the main results.
出处
《宁波大学学报(理工版)》
CAS
2004年第1期22-27,共6页
Journal of Ningbo University:Natural Science and Engineering Edition
关键词
奇异微分系统
柯西问题
存在性
惟一性
singular differential systems
Cauchy problem
existence
uniqueness