摘要
针对一类具有随参数变化状态时滞的线性参数变化系统,提出一种新的依赖于参数的Lyapunov稳定条件.该准则通过引入两个附加矩阵,解除了系统矩阵与依赖于参数的Lyapunov函数之间的耦合,更易于系统的分析与综合.在此基础上设计了此类系统的状态反馈控制器,采用线性矩阵不等式技术,将控制器存在的充分条件转化为参数线性矩阵不等式的解存在条件.数值仿真验证了所提出算法的可行性.
A parameter-dependent Lyapunov condition is proposed for the stability of linear parameter-varying (LPV) systems with a parameter-varying state delay. The stability criterion is achieved by the introduction of two slack variables, which eliminate the coupling between Lyapunov functions and system matrices. Upon the new conditions, the corresponding state feedback controllers are designed. Sufficient conditions for the existence of such controllers are established in terms of parameterized linear matrix inequalities (LMIs). And numerical example shows the feasibility of the proposed condition and controllers design procedure.
出处
《控制与决策》
EI
CSCD
北大核心
2004年第4期402-406,共5页
Control and Decision
基金
国家自然科学基金资助项目(69874008).
关键词
线性参数变化系统
参数线性矩阵不等式
状态时滞
Control system analysis
Feedback control
Lyapunov methods
Matrix algebra
Stability criteria
System stability