期刊文献+

时滞LPV系统的稳定新判据及控制器设计 被引量:2

Improved stability criterion and controller design for time-delayed LPV systems
下载PDF
导出
摘要 针对一类具有随参数变化状态时滞的线性参数变化系统,提出一种新的依赖于参数的Lyapunov稳定条件.该准则通过引入两个附加矩阵,解除了系统矩阵与依赖于参数的Lyapunov函数之间的耦合,更易于系统的分析与综合.在此基础上设计了此类系统的状态反馈控制器,采用线性矩阵不等式技术,将控制器存在的充分条件转化为参数线性矩阵不等式的解存在条件.数值仿真验证了所提出算法的可行性. A parameter-dependent Lyapunov condition is proposed for the stability of linear parameter-varying (LPV) systems with a parameter-varying state delay. The stability criterion is achieved by the introduction of two slack variables, which eliminate the coupling between Lyapunov functions and system matrices. Upon the new conditions, the corresponding state feedback controllers are designed. Sufficient conditions for the existence of such controllers are established in terms of parameterized linear matrix inequalities (LMIs). And numerical example shows the feasibility of the proposed condition and controllers design procedure.
出处 《控制与决策》 EI CSCD 北大核心 2004年第4期402-406,共5页 Control and Decision
基金 国家自然科学基金资助项目(69874008).
关键词 线性参数变化系统 参数线性矩阵不等式 状态时滞 Control system analysis Feedback control Lyapunov methods Matrix algebra Stability criteria System stability
  • 相关文献

参考文献10

  • 1[1]Watanabe K, Nobuyama E, Kojima A. Recent advances in control of time delay systems: A tutorial review[A]. Proc of the 35th Conf on Decision & Control[C].Kobe,1996.2083-2089.
  • 2[2]Gao Huijun, Wang Changhong. Robust L2-L∞ filtering for uncertain systems with multiple time-varying state delays[J].IEEE Trans on Circuits and Systems-I: Fundmental Theory and Applications,2003,50(4):594-599.
  • 3[4]Wu F, Grigoriadis K M. LPV systems with parameter-varying time delays: Analysis and control[J]. Automa-tica,2001,37(2):221-229.
  • 4[6]Zhang X P, Tsiotras P, Knospe C. Stability analysis of LPV time-delayed systems[J]. Int J on Control,2002,75(7):538-558.
  • 5[7]Apkarian P, Adams R J. Continuous-time analysis, eigenstructure assignment and H2 synthesis with enhanced linear matrix inequalities (LMI) characterizations[J]. IEEE Trans on Automatic Control,2001,46(12):1941-1946.
  • 6[8]De Oliveira M C, Bernussou J, Geromel J C. A new discrete-time robust stability condition[J]. Systems Control Lett,1999,37(4):261-265.
  • 7[9]Bara G I, Daafouz J, Kratz F. Advanced gain scheduling techniques for the design of parameter-dependent observers[A]. Proc of the 40th Conf on Decision & Control[C]. Florida,2001.3892-3897.
  • 8[10]Shaked U. Improved LMI representations for the ana-lysis and the design for continous-time systems with polotopic type uncertainty[J]. IEEE Trans on Control System Technology,2001,46(4):652-656.
  • 9[11]Boyd S P, El Ghaoui L, Feron E, et al. Linear Matrix Inequalities in System and Control Theory[M]. Philadelphia: SIAM,1994.
  • 10[12]Apkarian P, Adams R J. Advanced gain-scheduling techniques for uncertain systems[J]. IEEE Trans on Control System Technology,1998,6(1):21-32.

同被引文献15

  • 1王俊玲,王常虹,高会军.时滞LPV系统的H_∞控制新方法[J].控制理论与应用,2005,22(1):144-148. 被引量:9
  • 2Apkarian P, Gahinet P. A Convex Characterization of Gain-Scheduled Controllers [J]. IEEE Trans. Automatic Control, 1995, 40 (5): 853-864.
  • 3Apkarian P, Adams R. J. Advanced Gain-Scheduling Techniques for Uncertain Systems[J]. IEEE Trans. Control System Technology, 1998, 6 (1): 21-32.
  • 4Myung-Ki Kim, Myoung Ho Shin, Myung Jin Chung. A Gain-scheduled L2 Control to Nuclear Steam Generator Water Level [J]. Annals of Nuclear Energy, 1999, 26(10):905-916.
  • 5Bendotti P. and Bodenheimer B. Linear Parametervarying Versus Linear Time-invariant Control Design for a Pressurized Water Reactor[J]. Int. J. Robust and Nonlinear Control, 1999, 9(13): 969-995.
  • 6SHAMMA J S, ATHANS M. Analysis of gain scheduled control for nonlinear plants [J ]. IEEE Transactions on Automatic Control, 1990, 35 (7) :898 - 907.
  • 7APKARIAN P, ADAMS R J. Advanced gain - scheduling technology for uncertain systems [ J ]. IEEE Trans Control System Technology, 1998, 6( 1 ) :21 - 32.
  • 8APKARIAN P, GAHINET P, BECKER G. Self-scheduled H. control of linear parameter - varying systems: A design example [J]. Automatica, 1995, 31 (9) :1251 - 1261.
  • 9WU F, YANG X, PACKARD A, et al. Induced L2 - norm control of LPV systems with bounded parameter variation rates [ C ]//Proceedings of American Control Conference. Scattle: ACC, 1995 : 2375 - 2383.
  • 10WU F, GRIGORIADIS K M. LPV systems with parameter- varying time delays: analysis and control [J]. Automatica, 2001, 37(2):221 -229.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部