期刊文献+

长记忆SV模型的统计性质及其实证分析 被引量:1

On the Statistical Properties and Empirical Analysis of Long Memory Stochastic Volatility Model
下载PDF
导出
摘要 给出与证明长记忆随机 (LMSV)模型的矩与谱密度 ,波动替代量的长记忆性 ,与 ARFIMA模型的关系 ,以及其时间聚合等统计性质 ; This paper provides and proves the statistic properties of long memory stochastic volatility(LMSV) model such as moments and spectrum density, the volatility proxies, the relationship with ARFIMA model, and time aggregation. Finally, we research the memory of Shanghai stock market.
出处 《系统工程》 CSCD 北大核心 2004年第3期66-71,共6页 Systems Engineering
关键词 金融市场 长记忆SV模型 统计性质 股票市场 ARFIMA模型 Long Memory Stochastic Volatility Model Volatility Proxies Time Aggregation
  • 相关文献

参考文献1

二级参考文献12

  • 1[1]Drost F C, Nijiman T E. Temporal aggregation of GARCH processes[J]. Econometrica,1993,64(4):909-927.
  • 2[2]Meddahi N, Renault E. Temporal aggregation of volatility models[R]. Economics Department of Montreal University, Canada: Working Paper,2000.1-42.
  • 3[3]Sentana E, Nijiman T. Marginalization and contemporaneous aggregation in multivariate GARCH processes[J]. Journal of Econometrics,1996,71:71-89.
  • 4[4]Taylor S J. Modelling financial time series[M]. New York: Wiley,1986.
  • 5[5]Harvey A, Ruiz E, Shephard N. Multivariate stochastic variance models[J]. Review of Economic Studies,1994,61:247-264.
  • 6[6]So M K, Li W K, Lam K. Multivariate modeling of the autorgressive random variance process[J]. Journal of Time Series Analysis,1997,18(4):429-446.
  • 7[7]Ansley C F, Spivey W A, Wrobleski W J. On the structure of moving average processes[J]. Journal of Econometrics,1977,6:121-134.
  • 8[8]Lutkepohl H. Linear transformation of vector ARMA processes[J]. Journal of Econometrics,1984,26:283-293.
  • 9[9]Anderson T W. Statistical analysis of time series[M]. New York: John Wiley and Sons,Inc,1971.
  • 10[10]Amemiya T, Wu R Y. The effect of aggregation on prediction in the autoregressive model[J]. Journal of American Statistical Association,1972,67:628-632.

共引文献3

同被引文献14

  • 1李红权,马超群.股市收益率与波动性长期记忆效应的实证研究[J].财经研究,2005,31(8):29-37. 被引量:26
  • 2罗登跃,王玉华.上海股市收益率和波动性长记忆特征实证研究[J].金融研究,2005(11):109-116. 被引量:29
  • 3Ding Z, Granger C W J, Engel R F. A long memory property of stock market returns and a new model [J]. Journal of Empirical Finance, 1993, 1:83 -106.
  • 4Breidt F J, Crato N, de Lima P J F. The detection and estimation of long memory in stochastic volatility [J]. Journal of Econometrics, 1998, 83: 325-348.
  • 5Geweke J, Porter-Hudak S. The estimation and application of long memory time series models [J]. Journal of Time Series Analysis, 1983, 4: 221-238.
  • 6Robinson P M. Gaussian semiparametric estimation of long range dependence [J]. Annals of Statistics, 1994, 23: 1630-1661.
  • 7Robinson P M. Log-periodogram regression of time series with long range dependence [J]. Annals of Statistics, 1995, 23: 1048-1072.
  • 8Kim C S, Phillips P C B. Log periodogram regression in the nonstationary case [D]. Mimeo: Yale University, 1999.
  • 9Velasco C. Non-stationary log-periodogram regression [J]. Journal of Econometrics, 1999, 91:325 -371.
  • 10Whittle P. Hypothesis testing in time series analysis [R]. Almquist and Wiksells, Uppsala, 1951.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部