期刊文献+

辛算法的发展历史与现状 被引量:2

History and Present State of Symplectic Algorithm
下载PDF
导出
摘要 Hamilton系统是用来描述无耗散的物理过程与物理现象的一种力学系统 .辛几何算法是保结构算法中的一种 ,国内外学者在这一领域的研究 ,取得了丰硕的成果 文中介绍针对Hamilton系统的辛几何算法发展的简要历史、研究现状和未来发展与应用 ,尤其是国内学者在这一领域的主要工作 . Hamilton system is a mechanical system for the use of describing non-dissipative physical process and physical phenomenon. The algorithm of symplectic geometry is one of structure preserving algorithms. Scholars at home and abroad have scored great successes in this field. Aiming at algorithm of symplectic geometry for Hamilton system, the authors describe its concise history, present state, prospect and applications, especially the primcipal works of Chinese scholars in this field.
机构地区 华侨大学数学系
出处 《华侨大学学报(自然科学版)》 CAS 2004年第2期113-117,共5页 Journal of Huaqiao University(Natural Science)
基金 国务院侨务办公室科研基金资助项目 (0 2QZR0 7)
关键词 辛算法 HAMILTON系统 保结构算法 物理过程 辛几何 Hamilton system, symplectic algorithm, a study on the advances
  • 相关文献

参考文献19

二级参考文献50

  • 1黄浪扬,曾文平.解四阶杆振动方程的辛算法[J].漳州师范学院学报(自然科学版),2001,14(2):28-31. 被引量:7
  • 2廖晓峰,虞厥邦.解方程■=f(x)的—族高稳定十字架格式[J].电子科技大学学报,1993,22(5):521-526. 被引量:3
  • 3曾文平.高阶Schrodinger方程的哈密顿型蛙跳格式[J].高等学校计算数学学报,1995,17(4):305-317. 被引量:16
  • 4曾文平.用Hyperbolic函数构造Schrodinger方程的辛格式[J].应用数学学报,1996,19(3):424-430. 被引量:8
  • 5矢岛信男 野术达夫.发展方程的数值分析[M].东京:岩波书店,1977.46-232.
  • 6[1]Feng Kang and Qin Meng-Zhao. The symplectic methods for the computation of hamiltonian equations[C]. Lecture Notes in Mathematics. 1297, Spring-Verlag, 1987,1-37.
  • 7[2]Bridges T J. Multi-symplectic structures and wave propagation [C]. Math. Proc. Cam. Phil. Soc. 121(1997), 147-190.
  • 8[3]Bridges T J and Reich S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity[Z]. preprint Department of mathematics and statistics, University of Surrey, 1999.
  • 9[4]Bridges T J and Derks G. Unstable eigenvalues, and the linearization about solitary waves and fronts with symmetry[C], Proc. Roy. Soc. Lond. A(1999).
  • 10[5]Zhao Ping-Fu and Qin Meng-Zhao. Multisymplectic geometry and multisymplectic Preissmann Scheme for the KdV equation[J]. J. Phys. A: Math. Gen.,2000,33: 3613-3626.

共引文献141

同被引文献24

  • 1廖新浩,刘林.Hamilton系统数值计算的新方法[J].天文学进展,1996,14(1):3-11. 被引量:10
  • 2孙耿.波动方程的一类显式辛格式[J].计算数学,1997,19(1):1-10. 被引量:23
  • 3Kelly K R,Wave R W,Treitel S.Synthetic seismograms:a finite-difference approach.Geophysics,1976,41:2-27.
  • 4Dablain M A.The application of high-order differencing to the scalar wave equation.Geophysics,1986,51:54-66.
  • 5Komatitsch D,Vilotte J P.The spectral element method:an efficient tool to simulate the seismic responses of 2D and 3D geological structures.Bull.Seism.Soc.Am.,1998,88:368-392.
  • 6Chen K H.Propagating numerical model of elastic wave in anisotropic in homogeneous media-finite element method.Symposium of 54th SEG,1984,54:631-632.
  • 7Cerveny V,Firbas P.Numerical modeling and inversion of travel-time seismic body waves in inhomogeneous anisotropic media.Geophys.J.R.Astr.Soc.,1984,76:41-51.
  • 8Yang D H,Song G J,Lu M.Optimally accurate nearly analytic discrete scheme for wave-field simulation in 3D anisotropic media.Bull.Seism.Soc.Am.,2007,97(5):1557-1569.
  • 9Fei T,Larner K.Elimination of numerical dispersion in finite difference modeling and migration by flux-corrected transport.Geophysics,1995,60:1830-1842.
  • 10Yang D H,Teng J W,Zhang Z J,et al.A nearly-analytic discrete method for acoustic and elastic wave equations in anisotropic media.Bull.Seism.Soc.Am.,2003,93(2):882-890.

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部