期刊文献+

故障诊断专家系统知识获取的变精度粗集方法 被引量:4

VPRS Approach to Knowledge Acquisition for Fault Diagnosis Expert System
下载PDF
导出
摘要 针对故障诊断专家系统知识获取的问题 ,利用变精度粗集 (VPRS)理论模型进行知识简化 ,并采用正则条件熵和互信息熵对故障特征的选择进行评价 ,实现最简诊断知识的提取 ,以建立专家系统知识库。对滚动轴承故障诊断的实验表明 ,该方法有效地弥补了传统故障诊断专家系统知识获取的不足 ,可正确地实现故障诊断功能 ,在实际系统的故障诊断中具有应用价值。 In order to solve the problem of knowledge acquisition for fault diagnosis expert system, a variable precision rough set approach is proposed. Regularly conditional entropy and mutual information entropy are employed in the evaluation of fault features. The simplest diagnostic knowledge is acquired by variable precision rough set theory to construct the ES knowledge base. Simulation experiment of fault diagnosis of rolling bearings showes the effectiveness and the superiority of the proposed method.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2004年第2期118-122,共5页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金重点项目 (6 0 2 340 10 )
关键词 故障诊断 VPRS模型 专家系统 知识获取 信息熵 fault diagnosis variable precision rough set model expert system knowledge acquisition information entropy
  • 相关文献

参考文献6

  • 1傅军,闫建国,顾海宏.基于专家系统的CODOG动力系统实时诊断的研究[J].计算机工程,2000,26(10):65-67. 被引量:3
  • 2苗夺谦,胡桂荣.知识约简的一种启发式算法[J].计算机研究与发展,1999,36(6):681-684. 被引量:507
  • 3Ziarko W. Variable precision rough set model[J]. Journal of Computer and System Science,1993,46(1):39-59.
  • 4Czyzewski A, Kostek B. Expert media approach to hearing aids fitting[J]. International Journal of Intelligent Systems,2002,17(2):255-272.
  • 5Düntsch I, Gediga G. Uncertainty measures of rough set prediction[J]. Artificial Intelligence,1998,106(1), 109-137.
  • 6Nowicki R, Slowinski R, Stefanowski J. Evaluation of vibroacoustic diagnostic symptoms by means of the rough sets theory[J]. Computers in Industry,1992,20(2):141-152.

二级参考文献10

共引文献507

同被引文献27

  • 1刘春亚 何伟.一种基于粗集的缺损数据的处理方法[J].计算机科学,2002,29(9):44-46.
  • 2[1]Pawlak Z.Rough sets[J].International Journal of Computer & Information Sciences,1982,11:341-356.
  • 3[2]Pawlak Z,Grzymala-Busse,Slowinski R,et al.Rough sets[J].Communications of the ACM,1995,38(11):89-95.
  • 4[3]Ziarko W.Variable precision rough set model[J].Journal Computer and System Sciences,1993,46:39-59.
  • 5[4]Malcolm Beynon.Reducts within the variable precision rough sets model:A further investigation[J].European Journal of Operational Research,2001,134:592-605.
  • 6[5]A An,N Shan,et al.Discovering rules for water demand prediction:An enhanced rough set approach[J].Engineering Application and Artificial Intelligence,1996,9(60):645-653.
  • 7[9]Hong Tzung-Pei,Tseng Li-Huei,Wang Shyue-Liang.Learning rules from incomplete training examples by rough sets[J].Expert Systems with Applications,2002,22:285-193.
  • 8[10]Kryszkiewicz M.Rough set approach to incomplete information systems[J].Information Sciences,1998,112:39-49.
  • 9[11]Kryszkiewicz M.Rules in incomplete information systems[J].Information Sciences,1999,113:271-292.
  • 10[13]Guan J W,Bell D A,Guan Z.Matrix computation for information system[M].Information Sciences,2001.129-156.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部