期刊文献+

动力学系统伪谱与扰动系统谱的关系

Relationships of Pseudo-spectra of Dynamis Systems with Spectra of Its Perturbed Systems
下载PDF
导出
摘要 波形松弛算子通常是高度非正规的。这时 ,采用传统的谱概念来研究算子和迭代法的特性就会遇到困难。利用常微分方程系统波形松弛算子的伪谱 ,证明扰动系统波形松弛算子的谱是矩阵束伪谱 ,并给出扰动系统的谱通常包含在未扰动系统的伪谱中 ,从而进一步证实了在非正规系统中伪谱确实是一个有用的科学计算工具。 The waveform relaxation operator for many problems tends to be highly nonnormal,because the spectrum is not a good predictor of the behavior of the operator.The pseudo-spectra of waveform relaxation operators for ordinary differential equation systems are used,the spectra of perturbed systems are proved to be pseu-dospectra of matrix pencils.An inclusion relationship between them is obtained. The work here further confirms that the concept of pseu-dospectra is really a useful tool in scientific computation for nonnormal systems.
作者 李宝成 孙峥
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2004年第2期216-219,共4页 Journal of Nanjing University of Science and Technology
关键词 常微分方程 扰动系统 波形松弛 伪谱 ordinary differential equations perturbed systems waveform relaxation spectra pseudo-spectra
  • 相关文献

参考文献5

  • 1Miekkala U, Nevanlinna O. Convergence of dynamic iteration method for initial value problems[J]. SIAM J Sci Stat Comput, 1987, 8:459-482.
  • 2Trefethen L N. Pseudospectra of matrices, in numerical analysis 1991[M].UK:Longman Scientific and Technical, 1992. 234-266.
  • 3Trefethen L N. Pseudospectra of linear operators[J]. SIAM Review, 1997, 39: 383-406.
  • 4Reichel L, Trefethen L N. Eigenvalues ans pseudo-eigenvalues of Toeplitz matrices[J]. Linear Algebra Appl, 1992, 162-164:153-185.
  • 5Lumsdaine A, Wu D. Spectra and pseudospectra of waveform relaxation operators[J]. SIAM J Sci Comput, 1997, 18: 286-304.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部