期刊文献+

一类二阶Hamilton系统的周期解 被引量:2

Periodic Solutions of a Class of Second Order Hamiltonian Systems
下载PDF
导出
摘要 研究一类超二次二阶Hamilton系统周期解的存在性问题。在对线性项非零以及位势函数非齐次的假设下 ,运用临界点理论中的山路引理及其推广定理 ,证明此系统至少存在一个给定周期的周期解。 The existence result of periodic solutions for a class of superquadratic second order Hamiltonian systems is studied.Under the nonhomogeneous hypothesis on potential,a sufficient condition is proved for periodic solutions which have the prescribed period with the mountain pass theorem and its generalization.
作者 屠小明 尹群
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2004年第2期220-224,共5页 Journal of Nanjing University of Science and Technology
关键词 二阶HAMILTON系统 周期解 临界点理论 second order hamiltonian systems periodic solutions critical point theory
  • 相关文献

参考文献6

  • 1Mawhin J, Willem M. Critical point theory and periodic solutions of Hamilton Systems[M].New York:Springer-Verlag, 1989.
  • 2尹群,洪友诚.一类二阶Hamilton系统的受迫振动[J].数学年刊(A辑),1994,1(6):701-705. 被引量:6
  • 3Rabinowitz P.Minimax methods in critical point theory with applications to differential equation[A].CBMS Regional Conf Ser in Math[C].Rhode ISland:American Mathematical Society Providence,1986.
  • 4Krasnoselski M.A topological methods in the theory of nonlinear integral equations[M].New York: Macmillan,1964.
  • 5Rabinwitz P H. Periodic solutions of Hamiltonian systems[J]. Comm Pure Appl Math,1978(31):157-184.
  • 6Bartolo P,Benci V,Fortunato D.Abstract critical point theorems and applications to some nonlinear pro-blems with ''Strong'' reasonance at infinity[J].Nonlinear Anal T M A, 1983(9):981-1 012.

共引文献5

同被引文献11

  • 1尹群,洪友诚.一类二阶Hamilton系统的受迫振动[J].数学年刊(A辑),1994,1(6):701-705. 被引量:6
  • 2范先令,李风泉.“次二次”Hamilton系统周期解[J].兰州大学学报(自然科学版),1996,32(1):6-10. 被引量:4
  • 3Vieri B,Rabinowitz P H.Criacalpoint theorems for indefinite functionals[J].Invent Math,1979,52:241-273.
  • 4Mawhin J,Willem M.Critcial point theory and hamiltonian systems[M].New York:Springer-Verlag,1989.
  • 5Rabinowitz P H.Minimax methods in critical point theory with applications to differential equation[M].CBMS Reg Conf Set in Math,1986.
  • 6Mawhin J,Willem M. Critical point theory and Hamiltonian systems[ M]. New York:Springer- Verlag,1989.
  • 7Benei V,Rabinowitz P H. Critical Point Theorems for Indefinite Funetionals[ J]. Invent Math,1979,52:241 -273.
  • 8Rabinowitz P H. Minimax methods in critical point theory with applications to differential equation[ A ]. CBMS Reg Conf Ser in Math [ C ], 1986: 65.
  • 9Krasnoselski M A. Topological methods in the theory of nonlinear integral equations[ M ]. New York : Macmillan, 1964.
  • 10陈越奋.一类次二次二阶Hamilton系统的周期解[J].湖北民族学院学报(自然科学版),2008,26(1):21-24. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部