摘要
对自组织神经网络在客户分类中的应用进行了探讨 ,讨论了客户分类的概念、指标选取、分类方法选取、SOM(Self Organization Map)聚类方法 ,给出了一种基于 SOM的客户分类方法 ,即 :给出 RFM(近度 ,Recency;频度 ,Frequency;值度 ,Monentary)的指标 ,根据综合指标的计算和各个指标的相对学习结果变化趋势 ,将客户分类 .并进行了模拟计算 ,将模拟结果分类 ,以验证算法 .
An SOM(Self Organization Map) neural network application in customer classification is studied. First the concept,target selection,classification method of customer classificationis discussed,then SOM clustering method is described,and a customer classification method based on the SOM is given: taken RFM(Recency,Frequency,Monentary) as target indexes,then classifying customer by calculating the integrated target index and analyzing each target index relative varying trend. Finally the simulation is made,and the simulation result is classified in order to verify the arithmetic.1
出处
《系统工程理论与实践》
EI
CSCD
北大核心
2004年第3期8-14,共7页
Systems Engineering-Theory & Practice
基金
国家自然科学基金 (70 2 3 1 0 1 0 )
关键词
客户分类
自组织映射
自组织
神经网络
customer classification
SOM
self organization
neural network