期刊文献+

管线钢硫化氢应力腐蚀的影响因素 被引量:22

Influencing Factors of SSCC for Domestic Pipeline Steels
下载PDF
导出
摘要 为了解决国产高强钢的H2S应力腐蚀开裂(sulfidestresscorrosioncracking,SSCC)敏感性问题,采用恒载荷拉伸法(constantloadtensile)和慢应变速率法(slowstrainratetest,SSRT)测试了在含H2S的介质中不同焊接匹配及不同冷变形度条件下管线钢母材及其焊接接头的SSCC性能.结果表明,不同的焊接匹配导致管线钢具有不同的耐腐蚀性能;冷变形促进了材料局部微观缺陷内能的增加,这些缺陷所在的位置往往是氢易被捕捉的地方;随着冷变形度的增加,材料的抗腐蚀能力降低.可见,焊接匹配和冷变形度是影响国产管线钢SSCC的重要因素. With the application of domestic pipeline steel in 'Gas Transmitting from West to East' engineering, it is urgent to study sulfide stress corrosion cracking(SSCC)properties of domestic high strength pipeline steels. The constant load tensile test and slow strain rate test (SSRT) were adopted to study the effect of welding materials and cold work on the SSCC of pipeline steels in the solution with H_2S. The results suggested that different welding matches lead to different corrosive resistances of pipeline steels. A great deal of microstructure changes caused by cold work are in the state of high energy. With the increase of cold work of pipeline steels, consequently, the corrosion resistance for pipeline steels will decrease. In a word, welding match and cold work play an important role in corrosive properties of domestic high strength pipeline steels.
出处 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2004年第4期358-362,共5页 Journal of Tianjin University:Science and Technology
关键词 管线钢 焊接匹配 冷变形 应力腐蚀 硫化氢 恒载荷拉伸法 慢应变速率法 输气管道 pipeline steels welding match cold work sulfide stress corrosion cracking
  • 相关文献

参考文献12

  • 1Justice R H, Mackenzie J D. Progress in the control of stress corrosion cracking in a 914-mm OD gas transmission pipeline[A]. In:Proc NG-19/EPRG 7th Biennial Joint Meg on Line Pipe Research[C]. Pipeline Research Committee of the American Gas Association, 1988.
  • 2Domizzi G, Anteri G, Ovejiero-Garcia J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels[J]. Corrosion Science,2001,9:326-339.
  • 3Rocchini G.A computerized tool for corrosion rate monitoring[J]. Corrosion,1987,6:624-628.
  • 4Albarran T L, Ayuilar A,Martinez L,et al. Corrosion and cracking behavior in an API X80 steel exposed to sour gas environments[J]. Corrosion, 2002, 9:1 011-1 016.
  • 5Kharionovsky V V, Tcherni V P. Stress and strain state of a gas pipeline in conditions of stress corrosion[A]. In:Proceedings of the International Pipeline Conference[C]. 1996 (1): 479-483.
  • 6Parkins R N. Some aspects of stress corrosion crack propagation in mild steel[J]. Corrosion Science,1966,6:363-374.
  • 7Gutierrez-Solana F, Valiente A, Gonzalez J, et al. Strain-based fracture model for stress corrosion cracking of low-alloying steels[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,1996, 27 A (2): 291-304.
  • 8Nakayama Quen, Liang Chenghao , Akashi Masatssune.Repassivation method for determining the critical potential for initiation of stress-corrosion cracking[J]. Corrosion Engineering,1996, 45(5): 298-304.
  • 9Parkins R N, Blandchard W K, Delanty B S. Transgranular stress corrosion cracking of high-pressure pipeline in contact with solutions of near neutral pH[J]. Corrosion,1994, 50(5): 394-403.
  • 10Pricher H,Sussek G.Testing the resistance of welds in low-alloy steels to hydrogen induced stress corrosion cracking[J].Corrosion Science,1987,27(10/11):1 183-1 196.

同被引文献219

引证文献22

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部