摘要
给出了指数分布场合 ,具有随机应力转换时间的步加试验的 Bayes估计。为便于计算 ,还给出了 Bayes估计的一种近似算法 ,数值实例表明该方法是简便可行的。
Like Ref.2 by Xiong et al, we explore theoretically step-stress life testing with random stress-change time; like Ref.2 again, we assume that step-stress accelerated life obeys exponential distribution. We differ from Ref.2 in that Ref.2 used maximum likelihood estimate while we use Bayesian estimate. We derive eqs.(4) through (9) for making such Bayesian estimates of two test parameters: λ and θ. For convenience of calculation, we prove Theorem 1, which allows the use of eqs.(10) and (11) to calculate good approximations of Bayesian estimates of test parameters λ and θ respectively. Table 1 summarizes the results for a numerical example; these results do show that eqs.(10) and (11) can give good approximations of Bayesian estimates of test parameters λ and θ.
出处
《西北工业大学学报》
EI
CAS
CSCD
北大核心
2004年第2期205-208,共4页
Journal of Northwestern Polytechnical University
基金
国家自然科学基金 (79970 0 2 2 )
航空科学基金 (0 2 J5 30 79)
关键词
指数分布
随机应力转换时间
步加试验
Bayes估计
exponential distribution, step-stress life-testing, random stress-change time, Bayesian estimate