期刊文献+

带有居中盘与悬臂盘的裂纹转子系统非线性响应特性分析 被引量:3

On Nonlinear Response of Cracked Rotor with Midspan and Overhung Disc
下载PDF
导出
摘要 研究了轴上含有横向裂纹 ,刚性支承的带有居中盘和悬臂盘的双盘裂纹转子的非线性动态响应。考虑轴旋转过程中裂纹的开闭 ,推导出双盘裂纹转子的运动方程。采用仿真计算的方法 ,分析了转速、裂纹深度的变化对响应的影响 ,并且研究了盘的摆振与横向振动的区别。结果表明 ,裂纹转子随转速变化 ,响应会出现丰富的非线性特征 ;裂纹深度的增大 ,会导致系统响应出现分叉与混沌 ;外阻尼可以有效抑制非线性响应 ;盘的摆振对于裂纹的出现 ,较之横向振动 ,包含有明显的高次谐波分量 ,易于识别。 Our research on nonlinear response of cracked rotor has continued for more than ten years and is still continuing. In this paper, firstly we, considering the breathing of crack in rotation, derive motion equations for a cracked rotor with midspan and overhung disc, which is a system with eight degrees of freedom. Secondly we give simulation results, which show that both system parameters——rotating speed and crack depth——expressed in non-dimensional form, have large influence on nonlinear response. Fig.2(a) shows the Poincaré section at non-dimensional rotating speed Ω=0.446, which indicates that the response is quasi-periodic. As rotating speed increases, the torus begins to twist and bend and Fig.2(b) shows Poincaré section at Ω=0.454. At Ω=0.459 the response enters chaos as shown in Fig.2(c). At Ω= 0.466, the response leaves chaos and returns to quasi-period as shown in Fig.2(d). The non-dimensional form of crack depth is expressed by ΔK. In the neighborhood of ΔK=0.56, the response is still quasi-periodic; at ΔK=0.60, the response enters chaos. Thirdly, simulation results give some information which may be useful in fault diagnosis. Fig.4 shows that at Ω=0.41 and ΔK=0.6, power spectra show that swing vibration′s frequency components, as shown in Fig.4(a), are different from those of transverse oscillation, as shown in Fig.4(b).
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2004年第2期213-216,共4页 Journal of Northwestern Polytechnical University
基金 航空科学基金 (0 3C5 30 16 ) 国家重点实验室开放基金 (VSN- 2 0 0 3- 0 7) 西北工业大学青年创新基金
关键词 裂纹 双盘转子 非线性 摆振 nonlinear response, cracked rotor, swing vibration
  • 相关文献

参考文献5

  • 1王立平,杜润生,史铁林,杨叔子.带有轴承间隙的裂纹转子分叉与混沌特性[J].振动工程学报,2000,13(2):241-246. 被引量:12
  • 2Gasch R. A Survey of the Dynamic Behavior of a Simple Rotating Shaftwith a Transverse Crack. Journal of Sound and Vibration, 1993,16(2): 313-332
  • 3Muller P C, Bajkowski J, Soffker D. Chaotic Motions and Fault Detection in a Cracked Rotor. Nonlinear Dynamics,1994,15:233-254
  • 4Zheng J B, Meng G. Bifurcation and Chaos Response of a Nonlinear Cracked Rotor. International Journal of Bifurcation and Chaos, 1998,18(3): 597-607
  • 5Meng G, Gasch R. Stability and Stability Degree of a Cracked Flexible Rotor Supported on Journal Bearings. ASME Journal of Vibration and Acoustics, 2000,122: 116- 125

二级参考文献4

  • 1Chong Won Lee,ASME J Vibration Acoustics,1992年,114卷,217页
  • 2张正松,旋转机械振动监测及故障诊断,1991年
  • 3张文,转子动力学理论基础,1990年,143页
  • 4王立平,李晓峰,杜润生,杨叔子.开闭裂纹转子的模型化与动态仿真[J].华中理工大学学报,1999,27(4):65-67. 被引量:9

共引文献11

同被引文献22

  • 1陈宏,李鹤,张晓伟,闻邦椿.双盘悬臂裂纹转子-轴承系统的动力学分析[J].振动工程学报,2005,18(1):113-117. 被引量:8
  • 2袁惠群,吴英祥,李东,闻邦椿.滑动轴承-转子-定子系统耦合故障的非线性动力学特性[J].东北大学学报(自然科学版),2006,27(5):520-523. 被引量:10
  • 3罗跃纲,王培昌,闻邦椿.裂纹-碰摩转子-轴承系统周期运动稳定性[J].机械科学与技术,2006,25(6):705-707. 被引量:6
  • 4Mayes I W.Analysis of the response of a multirotor-bearing system containing a transverse crack in a rotor[J].ASME Journal of Vibration,Acoustics,Stress,and Reliability in Design,1984,106(2):139~145.
  • 5Lee C W.Modeling of a simple rotor with a switching crack and its experimental verification[J].ASME Journal of Vibration and Acoustics,1992,114(2):217~225.
  • 6Meng G,Gasch R.Stability and stability degree of a cracked flexible rotor supported on journal bearings[J].ASME Journal of Vibration and Acoustics,2000,122(1):116~125.
  • 7Ehrich F.Observations of sub-critical super-harmonic and chaotic response in rotor-dynamics[J].ASME Journal of Vibration and Acoustics,1992,114(1):93~100.
  • 8Chu F,Zhang Z.Bifurcation and chaos in a rub-impact Jeffcott rotor system[J].Journal of Sound and Vibration,1998,210(1):1~18.
  • 9Choy F K,Padovan J . Non-linear transient analysis of rotorcasing rub events [ J]. Journal of Sound and Vibration , 1987, 113(3) :529-545.
  • 10Ehrich F. Observations of sub-critical super-harmonic and chaotic response in rotor dynamics [ J]. ASME Journal of Vibration and Acoustics, 1992,114( 1 ) :93-100.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部