摘要
定义了一种新的矩阵类 :反对称正交反对称矩阵 ,研究了一类矩阵方程的反对称正交反对称解的存在性及其最佳逼近问题 .利用矩阵的广义奇异值分解 ,得到了该矩阵方程有反对称正交反对称解的充要条件及其通解表达式 ,并且给出了矩阵方程的解集合中与给定矩阵的最佳逼近 .
This paper defines a new type of matrix, i.e. anti-symmetric orthogonal anti-symmetric matrix, and studies the existence of the solution of this matrix and its optimal approximation in a typical kind of linear matrix equation.By applying the generalized singular value decomposition of matrices , we have established the necessary and sufficient conditions for the existence of solution and the general expression of the solution to this matrix, and have derived the optimal approximation of the solution in the solution set of given matrix.
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2004年第2期106-110,共5页
Journal of Hunan University:Natural Sciences
基金
国家自然科学基金资助项目 ( 10 1710 3 1)
关键词
矩阵方程
反对称正交反对称矩阵
矩阵范数
最佳逼近
matrix equation
anti-symmetric orthogonal anti-symmetric matrix
matrix norm
optimal approximation