期刊文献+

例外簇和变分不等式解的存在性

Exceptional Family and the Existence of a Solution to Variational Inequality
下载PDF
导出
摘要 为研究变分不等式解的存在性问题 ,本文提出了一个新的例外簇概念 ,并且证明了变分不等式或者有解 ,或者对任意 ^x ,有关于 ^x的一个例外簇 .借助于例外簇的这条性质 ,本文通过证明了变分不等式没有关于 ^x的一个例外簇 ,来说明变分不等式有解 ,从而得出一个变分不等式解的存在性定理 . This paper proposes a new definition of exceptional family for variational inequality for the study of the existence problem of variational inequality, and has proved that the variational inequality has at least one solution, or there exists an exceptional family with respect to . By means of the proposition of exceptional family, we have proved that the variational inequality has no solution, so the variational inequality has at least one solution. This paper provides an existence theorem for the variational inequality.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第2期111-112,共2页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目 ( 10 0 710 17)
关键词 变分不等式 例外簇 拓扑度 variational inequality solution topologic degree
  • 相关文献

参考文献6

  • 1HARKER P T, PANG J S. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory,algorithm, and applications [ J ]. Mathematical Programming,1990, 48(2): 161 - 220.
  • 2SMITH T E. A solution condition for complementarity problems,with an application to spatial price equilibrium [ J ]. Appl Math Computation, 1984, 15(1): 61-69.
  • 3ISAC G, BULAVASKI V, KALASHNIKOV V. Exception families, topological degree and complementarity problems [ J ].Global Optim, 1997, 10(2): 207 -225.
  • 4ZHAO Y B, HAN J Y, QI H D. Exceptional families and existence theorems for variational problems[J]. Optim Theory Appl,1999, 101 (2): 475 - 495.
  • 5张立平,韩继业,徐大川.变分不等式问题的解的存在性[J].中国科学(A辑),2000,30(10):893-899. 被引量:9
  • 6DEIMLING K. Nonlinear Functional Analysis[M]. New York:Springer-Verlag, 1985.

二级参考文献10

  • 1Y. B. Zhao,J. Y. Han,H. D. Qi. Exceptional Families and Existence Theorems for Variational Inequality Problems[J] 1999,Journal of Optimization Theory and Applications(2):475~495
  • 2Y.B. Zhao,J. Han. Exceptional Family of Elements for a Variational Inequality Problem and its Applications[J] 1999,Journal of Global Optimization(3):313~330
  • 3G. Isac,W. T. Obuchowska. Functions Without Exceptional Family of Elements and Complementarity Problems[J] 1998,Journal of Optimization Theory and Applications(1):147~163
  • 4G. Isac,V. Bulavski,V. Kalashnikov. Exceptional Families, Topological Degree and Complementarity Problems[J] 1997,Journal of Global Optimization(2):207~225
  • 5Patrick T. Harker,Jong-Shi Pang. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications[J] 1990,Mathematical Programming(1-3):161~220
  • 6Masakazu Kojima. A unification of the existence theorems of the nonlinear complementarity problem[J] 1975,Mathematical Programming(1):257~277
  • 7Jorge J. Moré. Classes of functions and feasibility conditions in nonlinear complementarity problems[J] 1974,Mathematical Programming(1):327~338
  • 8B. C. Eaves. On the basic theorem of complementarity[J] 1971,Mathematical Programming(1):68~75
  • 9S. Karamardian. Generalized complementarity problem[J] 1971,Journal of Optimization Theory and Applications(3):161~168
  • 10Philip Hartman,Guido Stampacchia. On some non-linear elliptic differential-functional equations[J] 1966,Acta Mathematica(1):271~310

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部