期刊文献+

基于变结构的不确定混沌系统时滞反馈控制 被引量:2

Control of time delay feedback of uncertain chaos systems based on structure variation
下载PDF
导出
摘要 针对不确定性混沌系统,提出一种具有很好鲁棒性的时滞反馈控制.应用变结构方法设计控制器,实现了快速跟踪混沌系统的不稳定周期轨道.利用梯度下降法获得不稳定周期值,解决了需要预先知道不稳定周期的困难.以Rossler和Lorenz系统为例,进行数值仿真,结果证明了该方法的有效性. An unstable periodic orbit (UPO) tracking of uncertain chaotic systems is considered. Time-delayed controller with good robustness is proposed. UPO is fast and successfully tracked via the variable structure control method. The period is achieved by means of gradient descent mechanism so that the accurate period need not known in advance. Finally, Rossler chaos and Lorenz systems have been simulated under the controller proposed. And the results verify the effectiveness and correction of time-delayed feedback controller.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2004年第2期238-241,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:60174045) 航空第一集团项目基金(批准号:01D52025).
关键词 不确定混沌系统 时滞反馈控制 跟踪控制 不稳定性 变结构控制 chaos time-delayed feedback uncertainty variable structure control tracking control
  • 相关文献

参考文献9

  • 1Ott E, Cerbogi C, Yorke J S. Controlling chaos [J]. Phys Lett A, 1990, 64: 1196-1199.
  • 2Chen G, Dong X. On feedback control of chaotic continuous time systems [J]. IEEE Trans Circuits Sys I, 1993, 40: 591-601.
  • 3Kittel A, Parisi J, Pyragas K. Delayed feedback control of chaos by self-adapted delay time [J]. Phys Lett A, 1995, 198: 433-436.
  • 4Nakajima H, Ito H, Ueda Y. Automatic adjustment of delay time and feedback gain in delayed feedback control chaos [J]. IEICE Trans Fundamentals, 1997, E80-A: 1554-1559.
  • 5Pyragas K. Continuous control of chaos by self-controlling feedback [J]. Phys Lett A, 1992, 170: 421-428.
  • 6CHEN Guan-rong, YU Xing-huo. On time-delayed feedback control of chaotic systems [J]. IEEE Trans Circuits and Sys I, 1999, 46: 767-772.
  • 7SONG Yan-xing, YU Xing-huo, CHEN Guan-rong, et al. Time delayed repetitive control for chaotic systems [J]. Inter J Bifurcation and Chaos, 2002, 12: 1057-1065.
  • 8YU Xing-huo. Tracking inherent periodic orbits in chaotic dynamic systems via adaptive variable structure time-delayed self control [J]. IEEE Trans Circuits Syst I, 1999, 46: 1408-1411.
  • 9关新平,刘奕昌,彭海朋,陈彩莲.不确定时滞混沌系统的鲁棒控制[J].控制与决策,2002,17(1):96-98. 被引量:2

二级参考文献6

  • 1[1]Mackey M C, Glass L. Oscillation and chaos in physio logical control system[J]. Science,1977,197:287-289.
  • 2[2]Tian Y C, Gao F R. Adaptive control of chaotic continuous-time system with delay[J]. Physica D,1998,117:1-9.
  • 3[3]Lu H, He Y, He Z. A chaos-generator: Analysis of complex dynamical of a cell equation in delayed cellular neural networks[J]. IEEE Trans Cirs Syst,1998,45(2):287-291.
  • 4[4]Farmer J D. Chaotic attractors of infinite dimensional dynamical systems[J]. Physica D,1982,4:366-372.
  • 5[5]Lien C H, Hsieh J G, Sun Y J. Robust stabilization for a class of uncertain systems with multiple time delays via linear control[J]. J Math Analysis and Appl,1998,218(2):369-378.
  • 6[6]Chen G, Yu X. On time-delayed feedback control of chaotic systems[J]. IEEE Trans Circ Syst,1999,46(6):767-775.

共引文献1

同被引文献19

  • 1张胜海,苗劲松,杨华.用延时注入-反馈法实现掺铒光纤激光器的混沌同步[J].吉林大学学报(理学版),2006,44(1):83-88. 被引量:3
  • 2LI Chuan-dong, LIAO Xiao-feng, Wong K W. Chaotic Lag Synchronization of Coupled Time-Delayed Systems and Its Applications in Secure Communication[J]. Physica D: Nonlinear Phenomena, 2004, 194(3/4) : 187-202.
  • 3Kwok H S, Tang W K S. A Fast hnage Encryption System Based on Chaotic Maps with Finite Precision Represenlalion [J]. Chaos, Solitons & Fractals, 2007, 32(4) : 1518-1529.
  • 4LU Jin-hu, ZHOU Tian-shou, ZHANG Suo-chun. Chaos Synchronization between Linearly Coupled Chaotic Systems [J]. Chaos, Solitons & Fractals, 2002, 14(4) : 529-541.
  • 5YIN Xun-he, REN Yong, SHAN Xiu-ming. Synchronization of Discrete Spatiotemporal Chaos by Using Variable Structure Control [ J ]. Chaos, Solitons & Fractals, 2002, 14 (7) : 1077-1082.
  • 6Wang Y W, Guan Z H, Xiao J W. Impulsive Control for Synchronization of a Class of Continuous Systems [ J ]. Chaos, 2004, 14 ( 1 ) : 199-203.
  • 7Ho M C, Hung Y C. Synchronization of Two Different Systems by Using Generalized Active Systems [J]. Phys Lett A, 2002, 301 (5/6) : 424-428.
  • 8LI Chuan-dong, LIAO Xiao-feng, ZHANG Rong. A Unified Approach for Impulsive Lag Synchronization of Chaotic. Systems with Time Delay [J]. Chaos, Solitons & Fractals, 2005, 23(4) : 1177-1184.
  • 9Kocarev L, Parlitz U. General Approach for Chaotic Synchronization with Applications to Communication [ J]. Phys Rev Lett, 1995, 74(25) : 5028-5031.
  • 10WANG Zuo-lei. Anti-synchronization in Two Non-identical Hyperchaotie Systems with Known or Unknown Parameters[J]. Commun Nonlinear Sci Numer Simulat, 2009, 14(5) : 2366-2372.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部