期刊文献+

奇异值分解识别精密机械热动态特性参数的研究 被引量:8

Research on identification of thermal dynamics characteristics parameter of precision machine based on singular value decomposition
下载PDF
导出
摘要 在精密机械热动态过程的离散化模型基础上,提出一种识别精密机械热动态特性参数的新方法——奇异值分解算法.在分析精密机械零部件的非定常导热问题时,由有限元法获得热动态过程空间离散化模型.采用热模态分析方法实现离散化模型解耦变换,模态坐标下的特性参数为热特征值(广义时间常数的倒数).辨识热动态特性参数的方法是通过构造热脉冲响应矩阵,采用矩阵奇异值分解的方法,以最少的参数和最小的阶次来描述精密机械热动态过程,进而求得热特征值.实测数据表明,该方法能有效地识别热特征值和快速估算出热平衡时间. A singular value decomposition algorithm for identifying these characteristics was proposed based on the discrete model of the thermal dynamics process of precision machine. The non-stationary thermal conduction and the thermal characteristics of a machine tool structure were modeled by FEM. Thermal modal analysis was introduced to diagonalize system equations and the characteristics parameters on the modal coordinate are thermal eigenvalues. A approach was presented deriving thermal dynamics characteristics with minimum parameter number and order. The singular value decomposition technique was used to identify the thermal modal parameter with thermal pulse response and obtain thermal eigenvalues. An example shows that the proposed method is effective for identifying thermal eigenvalues and calculating thermal balance time.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2004年第4期474-477,共4页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(5985018).
关键词 奇异值分解 精密机械 热动态特性 热平衡时间 空间离散化模型 热模态分析 Finite element method Heat conduction Machine tools Parameter estimation Precision engineering
  • 引文网络
  • 相关文献

参考文献1

共引文献1

同被引文献53

  • 1傅建中,陈子辰.精密机械热动态误差模糊神经网络建模研究[J].浙江大学学报(工学版),2004,38(6):742-746. 被引量:37
  • 2李永祥,童恒超,曹洪涛,张宏韬,杨建国.数控机床热误差的时序分析法建模及其应用[J].四川大学学报(工程科学版),2006,38(2):74-78. 被引量:38
  • 3唐和生,薛松涛,陈镕,晋侃.序贯最小二乘支持向量机的结构系统识别[J].振动工程学报,2006,19(3):382-387. 被引量:17
  • 4李永祥,杨建国.灰色系统模型在机床热误差建模中的应用[J].中国机械工程,2006,17(23):2439-2442. 被引量:25
  • 5Pahk H J, Lee S W. Thermal Error Measurement and Real Time Compensation System for the CNC Machine Tools Incorporating the Spindle Thermal Error and the Feed Axis Thermal Error[J]. International Journal of Advanced Manufacture Technology,2002, 20(7) : 487-494.
  • 6Yang H, Ni J. Dynamic Neural Network Modeling for Nonlinear, Nonstationary Machine Tool Thermally Induced Error[J]. International Journal of Machine Tools and Manufacture, 2005, 45(4): 455 -465.
  • 7VAPNIK V. Statistical learning theory[M]. New York: John Wiley, 1998.
  • 8SUYKENS J A K, VAN GESTEL T, DE BREBANTER J, et al. Least squares support vector machines[M]. Singapore: World Scientific Pub. Co., 2002.
  • 9SUYKENS J A K. Weighted least squares support vector machines: Robustness and sparse approximation[J]. Neurocomputing, 2002, 48(1): 85-105.
  • 10YANG S S, LU W C, CHEN N Y, et al. Support vector regression based QSPR for the prediction of some physicochemical properties of alkyl benzenes[J]. Journal of Molecular Structure, 2005, 719(13): 119-127.

引证文献8

二级引证文献119

相关主题

;
使用帮助 返回顶部