摘要
证明了严格凸Banach空间中非扩张映像T的不动点集F(T)是闭凸集,并证明了当F(T)是Hilbert空间闭线性子空间时,从空间中任一点x0出发的非扩张映像T的Ishikawa迭代序列若收敛于某不动点p,则p必是x0在F(T)中的最佳逼近元.
Let X be a strictly convex Banach space,T:D(T)→X be a nonexpansive mapping with F(T) nonempty,there F(T) is set of fixed points of T.Then F(T) is closed convex set.If F(T) is linear subspace in a Hilbert space and the Ishikawa iteration seguence from x_0∈D(T) of T converges a fixed point p∈F(T), then p is element of the best approimation of x_0 in F(T).
出处
《纺织高校基础科学学报》
CAS
2004年第1期32-35,共4页
Basic Sciences Journal of Textile Universities
基金
天津市学科建设基金资助项目(100580204)
关键词
非扩张映像
不动点
严格凸
一致凸
最佳逼近元
nonexpansive mapping
fixed point
strictly convex
uniformly convex
element of the best (approximation)