期刊文献+

利用MODIS数据进行植被水监测的应用研究 被引量:8

Research on Estimating Vegetation Water Content from MODIS Data
下载PDF
导出
摘要 植被水的监测始于对森林、草原火险评估的需要 ,另一方面 ,植被水的丰富程度也间接反映了当地土壤含水量状况 ,是当地干旱状况的一个重要指示。水是生命之源 ,对作物生长的影响巨大。因而对于农业区作植被水的监测 ,可以了解到区域植被供水状况信息。本研究正是基于上述的想法 ,以黄淮海农业区作为试验样区 ,对新型MODIS传感器的数据 ,应用GVMI指数模型 ,反演出植被水含量信息。比较植被水含量与当地降水量之间的关系 ,初步分析了植被水含量与区域旱情状况之间的关联性。 During the past decades, the repeated occurrence of severe wildfires affecting various parts of the world has highlighted the need to develop effective monitoring tools to assess and eventually mitigate these phenomena. Estimation of vegetation water content is central to the understanding of biomass burning process. On the other hand, vegetation water content relates to soil water content. It's an indication of local drought condition. Water is an essential factor for the growth of crop. Estimation of vegetation water content can make the condition of crop growth in the agriculture region clear. Based on the above theory, this research estimated vegetation water content using MODIS data, choosing Huang-Huai-Hai agriculture region as the research region. Based on the computed vegetation water content, was the relationship between vegetation water content and local drought condition.
出处 《遥感信息》 CSCD 2004年第1期19-22,共4页 Remote Sensing Information
基金 中国科学院知识创新工程重要方向性项目"生态安全相关要素的定量遥感关键技术研究 (KZCX3 -SW -3 3 4)"
关键词 MODIS数据 植被水 GVMI EWT vegetation water content MODIS GVMI EWT
  • 相关文献

参考文献20

  • 1刘闯,葛成辉.美国对地观测系统(EOS)中分辨率成像光谱仪(MODIS)遥感数据的特点与应用[J].遥感信息,2000,22(3):45-48. 被引量:158
  • 2刘闯,葛成辉.美国地球观测系统AQUA卫星数据政策、主要技术指标与数据本土化共享问题[J].遥感信息,2002,24(2):38-42. 被引量:55
  • 3Cukier, R. I., Fortuin, C. M., Schuler, K.E., Petschek, A.G., & Schaibly, J. H. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients: I. Theory[J].Journal of Chemical Physics, 1973(26): 1~42
  • 4E. Chuvieco, D. Rian, I. Aguado and D. Cocero. Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: applications in fire danger assessment[J]. International Journal of Remote sensing , 2001,23(11): 2
  • 5Gobron, N., Pinty, B., Verstraete, M. , & Widlowski, J.-L. Advanced vegetation indices optimized for up-coming sensors: design, performance and applications[J].IEEE Transactions on Geoscience and Remote Sensing, 2000,38(6): 2489~2505
  • 6Michio Anazawa, Genya Saito and Haruo Sawada(2000). Application and Validation of LWCI (Leaf Water Content Index) to Tropical Seasonal Forest Region.The 21st Asian Conference on Remote Sensing, Taipei, China(http://www.gisdevelopment.net/aars/acrs/2000/ts
  • 7A. Saltelli, S. Tarantola, K.P.-S. Chan. A quantitative model-independent method for global sensitivity analysis of model output[J].American Sstatistical Association and the American Society for Quality. Technometrics,1999, 41(1): 39~56
  • 8Ceccato, P., Nadine Gobron, Stephane Flasse, Bernard Pinty, & Stefano Tarantola. Designing a spectral index to esstimate vegetation water content from remote sensing data: Part 1. Theoretical approach[J]. Remote Sensing of Environment, 2002(82): 188~
  • 9Ceccato, P., Stephane Flasse, Jean-Marie Gregoire. Designing a spectral index to esstimate vegetation water content from remote sensing data: Part 2. Validation and applications[J]. Remote Sensing of Environment, 2002(82): 198~207
  • 10F. M. Danson, M. D. Steven, T. J. Malthus & J. A. Clark. High-spectral resolution data for determining leaf water content[J].International Journal of Remote sensing , 1992,13(3): 461-470

二级参考文献2

共引文献205

同被引文献162

引证文献8

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部