期刊文献+

基于遗传算法的网格结构的拓扑优化 被引量:3

Topological optimization of reticulated structures based on Genetic Algorithms
下载PDF
导出
摘要 遗传算法是一种新兴的基于遗传进化机理的寻优技术。它与常规算法的不同之处在于不受初始值影响、从多个初始点开始寻优,并采用交叉、变异和移民算子避免过早地收敛到局部最优解,可获得全局最优解。该算法小必求导计算,编程简单、快捷,尤其适用于具有离散变量的结构优化设计本文利用遗传算法对在应力、位移约束下的网格结构进行拓扑优化,利用对称性对杆件进行分组,使优化后的结构模型仍然保持对称,具有工程应用价值,并达到降低造价的目的。计算实例表明了该算法的有效件。 Genetic Algorithms (GA) is recently developed search strategy based on the rules of genetic evolution. It differs from existing mathematical programming methods in that the GA uses a population of initial points in contrast to the single-point approach by the traditional ones. The optimal solution by GA is no longer dependent on initial search values, and will guarantee a global optimum. Derivative calculation is not necessary and computer program is simple. Genetic algorithm is best suited for structural optimizations which have discrete variables. In this paper, the algorithm developed is used to deal with structure topological optimization problems with stress and displacement constraints. A numerical example shows that it is of high efficiency and good adaptability.
出处 《山东建筑工程学院学报》 2004年第1期8-11,90,共5页 Journal of Shandong Institute of Architecture and Engineering
基金 山东省教育厅科研计划项目(J01E03)
关键词 遗传算法 拓扑优化 网格结构 离散变量 位移约束 Genetic Algorithms (GA) topological optimization reticulated stmctures discrete variable
  • 相关文献

参考文献4

二级参考文献4

共引文献58

同被引文献26

  • 1刘锡良,潘延东.我国空间网架结构的发展现状[J].天津城市建设学院学报,1997,3(4):1-11. 被引量:5
  • 2张伟,鹿晓阳,杜忠友,赵晓伟,孙传伟.渐进结构优化方法及算例[J].山东建筑工程学院学报,2006,21(2):95-103. 被引量:3
  • 3黄晓红.网架结构设计方法的发展及其优化设计[J].国外建材科技,2006,27(5):73-74. 被引量:1
  • 4[1]Bendsoe M P.Optimization of structural topology,shape and material[M].New York:Springer Verlag,1997.
  • 5[2]Allaire G,Bonnetier E,Francfort G,et al.Shape optimization by the homogeenization method[J].Numerische Mathematik,1997,76(1):27-68.
  • 6[3]Ambrosio L,Buttazzo G.An optimal design problem with perimeter penalization[J].Calculus of Variations and Partial Differential Equation.1993,1 (1):55-69.
  • 7[4]Bendsoe M P,Sigmund O.Material interpolation schemes in topology optimization[J].Archive of Applied Mechanics,1999,69(9/10):35-654.
  • 8[5]Xie Y M,Steven G P.Evolutionary structural optimization[M].New York:Springer Verlag,1997.
  • 9[9]Sigmund O,Petersson J.Numerical instabilities in topology optimization:a survey on procedures dealing with checkerboards,mesh-dependencies and local minima[J].Structural and Multidisciplinary Optimization,1998,16(1):68-75.
  • 10[10]Poulsen T A.A simple scheme to prevent checkerboard patterns and one-node connected hinges in topology optimization[J].Structural and Multidisciplinary Optimization,2002,24(5):396-399.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部