期刊文献+

树上的二人对策着色 被引量:3

Relaxed Game Chromatic Number of Trees
下载PDF
导出
摘要 讨论了放松的二人对策着色,利用分裂顶点的方法,给出了Alice的获胜对策,从而得出树族的放松度为3的对策色数为2. This paper discusses the relaxed game coloring on graphs. By splitting colored vertices,we prove that if G is a tree, then for t=2, d≥3, Alice has a winning strategy.
出处 《淮阴师范学院学报(自然科学版)》 CAS 2004年第1期4-7,共4页 Journal of Huaiyin Teachers College;Natural Science Edition
关键词 对策着色 放松对策着色 可行色 放松对策色数 game coloring relaxed game coloring feasible color relaxed game chromatic number tree
  • 相关文献

参考文献10

  • 1[1]Bodlaender H L. On the complexity of some coloring games[J].Int J Found. Comput Sci, 1991(2): 133-148.
  • 2[2]Bondy J A,Murty U S R. Graph Theory with Application[M]. The Macmillan Press Ltd USA, 1976: 115-180.
  • 3[3]Chou C Y,Wang W,Zhu X. Relaxed game chromatic number of graphs[J]. Discrete Math, 2003(262): 89-98.
  • 4[4]Dinski T,Zhu X. A bound for the game chromatic number of graphs[J]. Discrete Math, 1999(196): 109-115.
  • 5[5]Faigle U,Kern U,Kierstead H A,Trotter W T. On the game chromatic number of some classes of graphs[J]. Ars Combin, 1993(35): 143-150.
  • 6[6]Guan D, Zhu X. The game chromatic number of outerplanar graphs[J]. J Graph Theory,1999(30): 67-70.
  • 7[7]Kierstead H A. A simple competitive graph coloring algorithm[J]. J Combin Theory Ser B, 2000(78): 57-68.
  • 8[8]Kierstead H A,Trotter W T. Planar graph coloring with an uncooperative partner[J]. J Graph Theory, 1994, 18(6): 569-584.
  • 9[9]Zhu X. The game coloring number of planar graphs[J], J Combin Theory Ser B, 1999(75): 245-258.
  • 10[10]Zhu X. The game coloring number of pseudo partial k-trees[J]. Discrete Math, 2000(215): 245-262.

同被引文献35

  • 1[1]Bodlaender H L.On the complexity of some coloring games[J].Int J Found.Comput Sci,1991,2:133-148.
  • 2[2]Faigle U,Kern U,Kierstead H A,Trotter W T.On the game chromatic number of some classes of graphs[J].Ars Combin,1993,35:143-150.
  • 3[3]Dinski T,Zhu X.A bound for the game chromatic number of graphs[J].Discrete Math,1999,196:109-115.
  • 4[4]Guan D,Zhu X.The game chromatic number of outerplanar graphs[J].J Graph Theory,1999,30:67-70.
  • 5[5]Chou C Y,Wang W,Zhu X.Relaxed game chromatic numberof graphs[J].Discrete Math,2003,262:89-98.
  • 6[7]He W,Wu J,Zhu X.Relaxed game chromatic number of trees and outerplanar graphs[J].Discrete Math,2004,281:209-219.
  • 7[8]Dunn C,Kierstead H A.A simple competitive graph coloring algorithm II[J].J Combin Theory Ser B,2004,90:93-106.
  • 8[10]Bondy J A,Murty U S R.Graph Theory with Application[M].The Macmillan Press Ltd USA,1976:115-180.
  • 9[11]Kierstead H A.A simple competitive graph coloring algorithm[J].J Combin Theory Ser B,2000,78:57-68.
  • 10[12]Kierstead H A,Trotter W T.Planar graph coloring with an uncooperative partner[J].J Graph Theory,1994,18(6):569-584.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部