期刊文献+

基于支持向量机的学习评价系统 被引量:7

Learning Effect Evaluation System Based on Support Vector Machine
下载PDF
导出
摘要 在分析学生学习行为的基础上,文章提出了支持向量机的学习评估系统的设计方案并进行了模拟,结果显示该系统能够有效地实现对学生的学习指导,同时给教师的教学提供了一个有力的教学辅助工具。 Based on the analysis of learning behavior of students, this paper puts forward a learning evaluation system that uses the support vector machine algorithm.The simulation result shows that the system can give a good evaluation for students' learning, furthermore, it provides teachers a powerful tool for teaching.
出处 《计算机工程》 CAS CSCD 北大核心 2004年第8期15-16,74,共3页 Computer Engineering
关键词 支持向量机 学习评价 统计学习理论 结构风险最小化 Support vector machine Learning evaluation Statistical learning theory Structural risk minimization
  • 相关文献

参考文献6

二级参考文献27

  • 1孙有发.智能管理及其在科研项目智能评审中的应用研究:硕士学位论文[M].广州:华南理工大学,2001..
  • 2[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 3[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297
  • 4[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136
  • 5[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998
  • 6[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998
  • 7[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953
  • 8[7]Stitson M O,Weston J A E,Gammerman A,Vovk V,Vapnik V.Theory of Support Vector Machines.Technical Report CSD-TR-96-17, Royal Holloway University of London,1996.12.31
  • 9[8]Osuna E,Freund R,Girosi F.Support Vector Machines:Training and Applications.AI Memo 1602,MIT AI Lab,1997
  • 10[9]Osuna E,Freund R,Girosi F.An Improved Training Algorithm for Support Vector Machines.In:Principe J,Gile L,Morgan N,Wilson E eds.,Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing,New York:IEEE,1997:276~285

共引文献2431

同被引文献58

  • 1赵健,潘建寿,陈光会.小波分形结合在图像处理中的应用研究[J].计算机工程,2005,31(1):29-30. 被引量:15
  • 2李琳,张晓龙.支持向量机学习方法的选择与应用[J].武汉科技大学学报,2006,29(1):75-78. 被引量:11
  • 3郭风,王思源,伦洪昌.ν-SVC分类算法在飞机作战效能评估中的应用[J].电光与控制,2007,14(2):38-40. 被引量:3
  • 4Vapnik V N. An overview of statistical learning theory[J]. IEEE Trans on NN., 1999,10(3) :988 - 999
  • 58 Burge C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery, 1998, (2) : 121-167.
  • 6John C Platt.Sequential minimal optimization: a fast. algorithm for training support vector machines [R]. Technical Report MSR-TR-98-14, 1998.
  • 7Vapnik V.Nature of Statistical Learning Theory. New York: Springer Verlag, 1995.
  • 8Goldberg D E.Genetic Algorithms in Search, Optimization and Machine-learning [M].New.
  • 9江西省水文局.江西省水文年鉴[Z].南昌:江西省水文局,2000-2006.
  • 10王浩.鄱阳湖水资源安全形势及对策[EB/OL].http://www.jxsl.gov.on/upload//3.ppt,2009-12.

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部