期刊文献+

结构损伤存在检测的两种神经网络的比较研究 被引量:1

Comparative study of two kinds of neural network used for structural damage occurrence detection
下载PDF
导出
摘要 目前采用的新奇检测方法———自联想记忆神经网络方法,当所用的测试数据具有不同噪声水平或为非正态分布时,会得出错误的结果.为此,提出了一种新的方法———统计神经网络方法,用于结构的损伤存在检测,并用"可能性"来描述结构损伤的存在.通过一个两层框架的数值模拟和一个简支梁的实验数据进行对比性研究表明,统计神经网络可以用来检测结构的损伤存在,具有比自联想记忆神经网络更好的检测效果. Novelty detection is an important means to detect structural damage occurrence. Nevertheless auto-associative memory neural network, the current novelty detection method, may give faulty information in structural novelty detection when the training and testing data are un-normally distributed or polluted by noise with different levels. Present a new approach called statistical neural network for structural damage detection, based on the neural network and statistical principle. The conception of possibility is applied in the sequence to represent the occurrence of structural damage. Both the numerical simulation results of a two-story steel frame and the experimental results of a simple beam prove that the performance of statistical neural network are better than the auto-associative memory neural network.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2004年第4期539-542,共4页 Journal of Harbin Institute of Technology
  • 相关文献

参考文献7

  • 1王柏生,倪一清,高赞明.框架结构连接损伤识别神经网络输入参数的确定[J].振动工程学报,2000,13(1):137-142. 被引量:38
  • 2WORDEN K. Structural fault detection using a novelty measure [ J ]. Journal of Sound and Vibration, 1997,201:85 - 101.
  • 3CHEN T H T, NI Y Q, KO J M. Neural network novelty filtering for anomaly detection of Tsing Ma Bridge cables[A]. Structural Health Monitoring [ C ]. Pennsylvania:Technomic Publishing Co, 2000.
  • 4KO J M, NI Y Q, ZHOU X T, et al. Structural damage alarming in Ting Kau Bridge using auto-associative neural networks [ A ]. Advances in Structural Dynamics[C]. Hong Kong: Elsevier Sience Ltd, 2000, 2:1021-1028.
  • 5WORDEN K. Structural fault detection using a novelty measure [ J ]. Journal of Sound and Vibration, 1997,201:85 - 101.
  • 6CHEN T H T, NI Y Q, KO J M. Neural network novelty filtering for anomaly detection of Tsing Ma Bridge cables[A]. Structural Health Monitoring [ C ]. Pennsylvania:Technomic Publishing Co, 2000.
  • 7KO J M, NI Y Q, ZHOU X T, et al. Structural damage alarming in Ting Kau Bridge using auto-associative neural networks [ A ]. Advances in Structural Dynamics[C]. Hong Kong: Elsevier Sience Ltd, 2000, 2:1021-1028.

二级参考文献4

共引文献37

同被引文献33

  • 1刘文峰,柳春图,应怀樵.通过频率改变率进行损伤定位的方法研究[J].振动与冲击,2004,23(2):28-30. 被引量:37
  • 2Pandey A K, Biswas M, Samman M M. Damage detection from changes in curvature mode shapes[J]. Journal of Sound and Vibration, 1992,145(2):321-332.
  • 3Salawn O S ,Williams C. Damage location using vibration mode shapes[A]. Proceedings of 12th IMAC[C]. USA: Honolulu, 1994.933-939.
  • 4Wolff T, Richardson M. Fault detection in structures from changes in their modal parameters[A]. Proceedings of the 7th IMAC[C].USA: Las Vegas, 1989.87-94.
  • 5Lieven N A, Ewins D J. Spatial correlation of mode shapes, the co-ordinate modal assurance criterion (COMAC)[A]. Proceedings of the 6th IMAC[C]. USA: Orlando, 1988. 690-695.
  • 6Sohn H, Farrar C R. Damage diagnosis using time series analysis of vibration signals[J]. Smart Materials and Structures, 2001, (10):446-451.
  • 7Park G, Cudney H H, Inman D J. Impedance-based health monitoring technique for civil structures[A]. Proceedings of the 2nd international workshop on structural health monitoring[C]. Stanford: Stanford University, 1999. 523-532.
  • 8Cawley P, Adams R D. The location of defects in structures from measurements of natural frequencies[J]. Journal of Strain Analysis,1979, 4(2):49-57.
  • 9Kaminski P C. The approximate location of damage through the analysis of natural frequencies with artificial neural networks[J].Journal of Mechanical Engineering, 1995,209(3) : 117-223.
  • 10Lam H F, Ko J M, Wong C W. Localization of damaged structural connections based on experimental modal and sensitivity analysis[J]. Journal of Sound and Vibration, 1998, 210(1)191-115.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部