期刊文献+

Ridgelet变换在地震数据压缩中的应用 被引量:2

Seismic data compression based on the Ridgelet transform
下载PDF
导出
摘要 鉴于地震数据反映的物理界面的空间展布往往具有直线、平面等特性,小波变换进行震压缩处理不能很好地反映这一特性,根据Ridgelet变换的特点,将Ridgelet变换应用于地震数据压缩,结合嵌入式零树编码方法,提出了Ridgelet变换的地震数据压缩方法。通过对实际资料的处理,在压缩率为99.0%和90%时,比较了Ridgelet变换与小波变换处理结果。研究结果表明:Ridgelet变换应用于地震数据压缩,其对数据的压缩比比小波变换对数据的压缩比大。 Wavelet transform has been introduced successfully to seismic data compression, it is efficient to the objects of point singularities according to its characters. In seismic data imaging, because the layers media is of line (or super-plane) singularities, wavelet transform has its shortcomings. Recently, a new transform, i.e., Ridgelet transform, was proposed. Ridgelet transform has much higher precision, especially for describing the objects which have line (or super-plane) singularities. In this paper, according to this character of ridgelet transform, the method of seismic data compressing, used Ridgelet transform is proposed. The results of the method are obtained for real seismic data. Practical experiments results show that the proposed method works well. With the comparisons to the wavelet transform, at the compression ratio 99.0% and 90%, the Ridgelet transform is more efficient and has higher compressing ratio, and is much better than other methods.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第2期300-303,共4页 Journal of Central South University:Science and Technology
基金 湖南省中青年科技基金资助项目(98JZY2170)
关键词 RIDGELET变换 数据压缩 RADON变换 RIDGELET变换 地震勘探 wavelet transform Radon transform Ridgelet transform seismic data data compression
  • 相关文献

参考文献13

  • 1赵改善.小波变换与地震数据压缩[J].石油物探,1994,33(4):19-28. 被引量:10
  • 2唐向宏,贺振华,杨绍国.利用小波变换进行地震数据压缩[J].成都理工学院学报,1999,26(2):183-186. 被引量:7
  • 3Candes E J.Ridgelet: theory and applications [D].Stanford:Department of Statistics,Stanford University,1998.
  • 4Candes E J.Ridgelets: Estimating with ridge functions [R].Stanford:Department of Statistics,Stanford University,1999.
  • 5Candes E J.Monoscale ridgelets for the representation of images with edges [R].Stanford: Department of Statistics,Stanford University,1999.
  • 6Donoho D L.Orthonormal Ridgelets and linear singularities[J].SIAM J Math Anal,2000,31(5):1062-1099.
  • 7Donoho D L.Digital Ridgelet transform via rectopolar coordinate transform [R].Stanford: Department of Statistics,Stanford University,1998.
  • 8Beylkin G.Discrete Radon transform[J].IEEE Tans ASSP,1987,35(1):162-172.
  • 9Donoho D L.De-noiseing by soft-thresholding [J].IEEE Trans Infom Theory,1995,41(5):613-627.
  • 10Donoho D L,Johnstone I M.Ideal spatial adaptation via wavelet shrinkage[J].Biometrika,1994,81:425-455.

二级参考文献19

共引文献14

同被引文献19

  • 1袁修贵,张安.Ridgelet变换在图像压缩中的应用[J].计算机工程与科学,2005,27(11):34-35. 被引量:3
  • 2张选德,宋国乡.基于脊波变换的图像压缩算法[J].现代电子技术,2006,29(6):62-64. 被引量:3
  • 3Beylkin G.Discrete Radon transform[J].IEEE Trans ASSP,1987,35(1):162-172.
  • 4HU JICUN.Cone beam tomographic image reconstruction:algorithm development and application in small animal imaging[D];Department of Biomedical Engineering,Maruette University;Department of Biophysics,Medical College of Wisconsin,2004.
  • 5http://www.gris.uni-tuebingen.de/areas/scivis/volren/dataset s/data/engine.raw.gz.
  • 6Mallat S.A wavelet tour of signal processing[M].北京:机械工业出版社,1998.
  • 7ZENG Li,Jansen C P,Marsch S,et al.Wavelet compression of fourdimensional arbitrarily size echocardiographic data[J].IEEE Trans on Medical Imaging,2002,21 (9):1179-1187.
  • 8Candes E J.Ridgelet:theory and application[D].Department of Statistics,Stanford University,1998.
  • 9Candes E J,Donoho D L.Ridgelet:a key to higher-dimensional intermittency?[J].Philosophical Transactions of the Royal Society of London.Ser.A,1999,357:2495-2507.
  • 10Do M N,Vetterli M.Orthornormal finite ridgelet transform for image compression[C]//ICIP.New York:IEEE,2000:367-370.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部