摘要
The size of austenite grain has significant effects on components and proportions ofvarious ferrites in low-alloy steel weld metal. Therefore, it is important to determinethe size of austenite grain in the weld metal. In this paper, a model based upon thecarbon diffusion rate is developed for computing austenite grain size in low-alloy steelweld metal during continuous cooling. The model takes into account the effects of theweld thermal cycles, inclusion particles and various alloy elements on the austenitegrain growth. The calculating results agree reasonably with those reported experimentalobservations. The model demonstrates a significant promise to understand the weldmicrostructure and properties based on the welding science.
The size of austenite grain has significant effects on components and proportions ofvarious ferrites in low-alloy steel weld metal. Therefore, it is important to determinethe size of austenite grain in the weld metal. In this paper, a model based upon thecarbon diffusion rate is developed for computing austenite grain size in low-alloy steelweld metal during continuous cooling. The model takes into account the effects of theweld thermal cycles, inclusion particles and various alloy elements on the austenitegrain growth. The calculating results agree reasonably with those reported experimentalobservations. The model demonstrates a significant promise to understand the weldmicrostructure and properties based on the welding science.