期刊文献+

自适应广义线性回归拟似然估计渐近理论 被引量:1

Asymptotic Theory of Quasi-maximum Likelihood Estimator in Generalized Linear Models With Adaptive Designs
下载PDF
导出
摘要 研究自适应设计下的拟似然方程 ∑ni=1xi(yi- μ(x′iβ) ) =0 ,在一定的条件下证明了以概率 1此方程当n充分大时有解^βn,^βn 为β0 的强相合估计 ,且得出了 ^βn- β0的收敛速度 ;然后又在一定的条件下证明了 ^βn This paper studies the quasi likelihood equation ∑ni=1x i(y i-μ(x ′ iβ))=0 with adaptive designs.Under certain conditions, we obtain that there exists solution n to the above equation with probability 1 for sufficently large n, n is the estimator of strong consistency of β 0, and the convergence rate of n-β 0; And then ,under certain conditions we obtain some results of asymptotic normality.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2004年第2期132-139,共8页 JUSTC
基金 国家自然科学基金 (1 0 1 71 0 94 1 0 2 71 0 0 1 ) 教育部博士点基金与中国科学院 中国科学技术大学创新基金
关键词 拟似然方程 强相合性 渐近正态性 自适应广义线性回归拟似然估计 渐近理论 quasi-likelihood estimate strong consistency asyptotic normality
  • 相关文献

参考文献8

  • 1Haberman S J. Maximum likelihood estimates in exponential response models [ J ]. Ann Statist , 1997, 5:1 148-1 169.
  • 2Fahrmeir L, Kanfmann H. Consistency and asymptotic normality of the maximum liklihood estimator in generalized linear models [ J ].Ann Statist , 1985, 13:342-368.
  • 3Fahrmeir L, Kanfmann H. Asymptotic inference in discrete response models [ J ]. Statistical Papers, 1986, 27 : 179-205.
  • 4Kani Chen, et al. Strong consistency of maximum quasi-likelihood estimators in generalized linear models with fixed and adaptive design.[J]. Ann Statist, 1999, 27:1 155-1 163.
  • 5Lai T L and Wei C Z. Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems[J]. Ann Statist, 1982, 10: 154-166.
  • 6Dugundji J. Topology [ M ]. Boston : Allyn and Bacon, 1966.
  • 7高启兵,吴耀华.广义线性回归拟似然估计的强相合性[J].数学年刊(A辑),2004,25(6):705-710. 被引量:17
  • 8高启兵,吴耀华.广义线性回归拟似然估计的渐近正态性[J].系统科学与数学,2005,25(6):738-745. 被引量:15

二级参考文献12

  • 1高启兵,吴耀华.广义线性回归拟似然估计的强相合性[J].数学年刊(A辑),2004,25(6):705-710. 被引量:17
  • 2Haberman, S. J., Maximum likelihood estimates in exponential response models [J],Ann. Statist., 5(1997), 1148-1169.
  • 3Fahrmeir, L. & Kanfmann, H., Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear regression [J], Ann. Statist., 13(1985), 342-368.
  • 4Fahrmeir, L. & Kanfmann, H., Asymptotic inference in discrete response models [J],Statistical Papers, 27(1986), 179-205.
  • 5Chen Kani et al., Strong consistency of maximum quasi-likelihood estimators in generalized linear models with fixed and adaptive design [J], Ann. Statist., 27(1999), 1155-1163.
  • 6Petrov, V. V., Sum of Independent Random Variables [M], Springer-Verlag, Berlin,New York, 1975.
  • 7Dugundji, J., Topology [M], Allyn and Bacon, Boston, 1966.
  • 8Haberman S J.Maximum likelihood estimates in exponential response models.Ann.Statist.,1997,5:1148-1169.
  • 9Fahrmeir L,Kanfmann H.Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models.Ann.Statist.,1985,13:342-368.
  • 10Fahrmeir L,Kanfmann H.Asymptotic inference in discrete response models.Statistical Papers,1986,27:179-205.

共引文献24

同被引文献2

  • 1Chen K. Strong consistency of maxximum Quasi-likelihood estimators in generalized linear models with fixed and adaptive design [ J ]. Ann Statist, 1999,27 (4) : 1155 - 1163.
  • 2Fahrmeir L , Kanfmann H. Consistency and asymptotic mormality of the maximum likelihood estimator in generalized linear regression [J ]. Ann Statist, 1985,13 ( 1 ) : 342 - 368.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部