期刊文献+

一类规划问题的最优性讨论

Optimality Discussion of a Class of Programming Problem
下载PDF
导出
摘要 本文首先给出一类新的目标函数的分子和分母及约束函数都含有支撑函数的单目标分式规划问题模型,并打破f(x),g(x),hj(x)可微的限制,率先利用凸分析理论讨论了f(x),g(x),hj(x)不可微(从而目标函数和约束函数可微性不定)时的最优性条件。 A class of programming problem is considered, in which the numerator and the denominator of the objective function and the constraint functions involve support functions. Further more, when f(x),g(x),hj(x) are subdiffrentiable functions the paper presents the optimality discussion.
作者 孙玉华
出处 《运筹与管理》 CSCD 2004年第2期70-73,共4页 Operations Research and Management Science
关键词 运筹学 分式规划 最优性条件 支撑函数 目标函数 约束函数 operations research fractional programming problem optimality conditions support functions
  • 相关文献

参考文献4

  • 1Bector C R, Chadra S, Huasin I. Optimality conditions and duality in subdifferentiable multiobjective Fractional programming[J]. JOJA,1993,79(1): 105-125.
  • 2Bhatia D. A not on duality theorem for a nonlinear programming problem[J]. Managemant Science, 1970,16(9):604-606.
  • 3伍小林,陈开周.一类不可微分式规划的最优性讨论[J].应用数学学报,1993,16(4):534-543. 被引量:3
  • 4Ag hezzaf Brahim, Hachimi Mohamed. Sufficiency and duality in multiobjective programming involving generalized (F, P)-convexity [J].JMAA, 2001,258:617-628.

二级参考文献2

  • 1C. Singh. Nondifferentiable fractional programming with Hanson-Mond classes of functions[J] 1986,Journal of Optimization Theory and Applications(3):431~447
  • 2Jean-Pierre Crouzeix,Jacques A. Ferland,Siegfried Schaible. Duality in generalized linear fractional programming[J] 1983,Mathematical Programming(3):342~354

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部