期刊文献+

基于多通道PCA模型的手写汉字识别方法

A New Approach for Handwritten Chinese Character Recognition Based on Multi-Channel PCA Model
下载PDF
导出
摘要 为了提高手写汉字的识别率和降低训练时间 ,提出了一种基于多通道 PCA(Principal com ponentanalysis)模型的手写汉字识别方法 .该方法首先根据汉字的结构特点 ,将手写汉字分解为“一”、“丨”、“丿”、“”4种方向子模式 ,然后分别对每个子模式进行主分量分析 ,最后通过建立起每类汉字的多通道 PCA模型来进行手写汉字的识别 .该方法既兼顾了主分量对手写汉字的描述能力 ,又有效地降低了建立模型的训练时间 .针对 10 34类别的手写汉字样本的实验结果表明 ,该汉字识别方法的识别率较欧氏距离分类器提高了 4 .4个百分点 ,而其训练时间则明显低于直接进行 PCA重建的识别方法 ,由此可见 。 In this paper, a new approach for handwritten Chinese character recognition based on multi channel PCA(principal component analysis)model is proposed. In terms of the stroke directional characteristics of the handwritten characters, a handwritten Chinese character is decomposed into the four directional sub patterns at first, namely, horizontal (一), vertical(丨), left up diagonal (丿) and right up diagonal(FDA1)sub pattern, each of which could be modeled by its principal components. Then, based on their four sub pattern PCA models, a multi channel PCA model for each category of the handwritten Chinese character is constructed respectively, and the model's reconstruction error is used as a matching measure for the handwritten Chinese character recognition. The method can not only exploit principal components' ability for representing the handwritten Chinese character sample set, but also effectively reduce the training time for modeling. Experimental results on 1034 categories of handwritten Chinese characters indicate that, the proposed method can improve recognition rate by 4 4% comparing to the Euclidean distance classifier, while its training time is much lower than that for modeling handwritten Chinese character directly by its PCA model, showing the effectiveness of the proposed approach.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2003年第7期788-791,共4页 Journal of Image and Graphics
基金 国家自然科学基金(60 2 750 0 5 ) 广东省自然科学基金(0 11611 020828) Motorola研究基金
关键词 多通道PCA模型 手写汉字识别 主分量分析 欧氏距离分类器 Handwritten Chinese character recognition, Principal component analysis, Multi channel PCA model
  • 相关文献

参考文献9

  • 1[1]Hildebrand T H, Liu W. Optical recognition of handwritten Chinese characters: advances since 1980 [J]. Pattern Recognition, 1993, 26(2): 205~225.
  • 2[2]Tsukumo J. Handprinted Kanji OCR development-what was solved in handprinted Kanji character recognition? [J]. Institute of Electronics Information and Communication Engineers Transactions on Information and Systems. 1996, E79-D: 411~416.
  • 3[3]Kimura Y, Wakahara T. Toward robust handwritten Kanji character recognition [J]. Pattern Recognition Letters, 1999,20(10): 979~990.
  • 4[4]Xu Lei. Theories of unsupervised learning, PCA and its nonlinear extensions[A]. In: Proceedings of IEEE International Conference on Neural Networks'94 [C], Orlando, Florida,USA, 1994: 1254~1257.
  • 5[5]Kirby M, Sirovich L. Application of the Karhunen-Loève procedure for the characterization of human faces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990, 12(1): 103~108.
  • 6[6]Pentland A, Moghaddam B, Starner T. View-based and modular eigenspaces for face recognition[A]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [C], Seattle, WA, USA,1994: 84~91.
  • 7[7]Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs.fisherfaces: Recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720.
  • 8[8]Murase H, Nayar S. Visual learning and recognition of 3D objects from appearance[J]. Intelernational Journal of Computer Vision, 1995, 14(1): 5~24.
  • 9[9]Jin Lian-wen. Handwritten Chinese character recognition with directional decomposition cellular features [J]. Journal of Circuits, System, and Computers, 1998, 8(4): 517~524.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部