期刊文献+

一种受限非负矩阵分解方法 被引量:10

Constrained factorization method for non-negative matrix
下载PDF
导出
摘要 提出一种获取潜在语义的受限非负矩阵分解方法 .通过在非负矩阵分解方法的目标函数上增加 3个约束条件来定义受限非负矩阵分解方法的目标函数 ,给出求解受限非负矩阵分解方法目标函数的迭代规则 ,并证明迭代规则的收敛性 .与非负矩阵分解方法相比 ,受限非负矩阵分解方法能获取尽可能正交的潜在语义 .实验表明 ,受限非负矩阵分解方法在信息检索上的精度优于非负矩阵分解方法 . A novel method, constrained non-negative matrix factorization, is presented to capture the latent semantic relations. The objective function of constrained non-negative matrix factorization is defined by imposing three additional constraints, in addition to the non-negativity constraint in the standard non-negative matrix factorization. The update rules to solve the objective function with these constraints are presented, and its convergence is proved. In contrast to the standard non-negative matrix factorization, the constrained non-negative matrix factorization can capture the semantic relations as orthogonal as possible. The experiments indicate that the constrained non-negative matrix factorization has better precision than the standard non-negative matrix factorization in information retrieval.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第2期189-193,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金青年科学基金资助项目 ( 60 3 0 3 0 2 4) 国家 973规划资助项目(G19990 3 2 70 1) 国家自然科学基金资助项目( 60 0 73 0 12 )
关键词 非负矩阵分解 受限非负矩阵分解 潜在语义 信息检索 non-negative matrix factorization constrained non-negative matrix factorization latent semantic relations information retrieval
  • 相关文献

参考文献6

  • 1[1]Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization [J]. Nature, 1999, 401: 788-791.
  • 2[2]Lee D D, Seung H S. Algorithms for non-negative matrix factorization [J]. Advances in Neural Information Processing Systems, 2001, 13: 556-562.
  • 3[3]Tsuge S, Shishibori M, Kuroiwa S. Dimensionality reduction using non-negative matrix factorization for information retrieval [A]. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetice[C]. Tucson, USA, 2001. 960-965.
  • 4[4]Li S Z, Hou X W, Zhang H J. Learning spatially localized parts-based representation [A]. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition [C]. Hawaii, USA, 2001.207-212.
  • 5[5]Lu Jianjiang, Xu Baowen, Yang Hongji. Mining typical user profiles using non-negative matrix factorizationg [A]. In:The Ninth International Conference on Distributed Multimedia Systems [C]. Florida, USA, 2003. 105-109.
  • 6陆建江,徐宝文,黄刚石,张亚非.Matrix dimensionality reduction for mining typical user profiles[J].Journal of Southeast University(English Edition),2003,19(3):231-235. 被引量:2

二级参考文献1

  • 1Inderjit S. Dhillon,Dharmendra S. Modha. Concept Decompositions for Large Sparse Text Data Using Clustering[J] 2001,Machine Learning(1-2):143~175

共引文献1

同被引文献119

引证文献10

二级引证文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部