摘要
提出一种获取潜在语义的受限非负矩阵分解方法 .通过在非负矩阵分解方法的目标函数上增加 3个约束条件来定义受限非负矩阵分解方法的目标函数 ,给出求解受限非负矩阵分解方法目标函数的迭代规则 ,并证明迭代规则的收敛性 .与非负矩阵分解方法相比 ,受限非负矩阵分解方法能获取尽可能正交的潜在语义 .实验表明 ,受限非负矩阵分解方法在信息检索上的精度优于非负矩阵分解方法 .
A novel method, constrained non-negative matrix factorization, is presented to capture the latent semantic relations. The objective function of constrained non-negative matrix factorization is defined by imposing three additional constraints, in addition to the non-negativity constraint in the standard non-negative matrix factorization. The update rules to solve the objective function with these constraints are presented, and its convergence is proved. In contrast to the standard non-negative matrix factorization, the constrained non-negative matrix factorization can capture the semantic relations as orthogonal as possible. The experiments indicate that the constrained non-negative matrix factorization has better precision than the standard non-negative matrix factorization in information retrieval.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2004年第2期189-193,共5页
Journal of Southeast University:Natural Science Edition
基金
国家自然科学基金青年科学基金资助项目 ( 60 3 0 3 0 2 4)
国家 973规划资助项目(G19990 3 2 70 1)
国家自然科学基金资助项目( 60 0 73 0 12 )
关键词
非负矩阵分解
受限非负矩阵分解
潜在语义
信息检索
non-negative matrix factorization
constrained non-negative matrix factorization
latent semantic relations
information retrieval