期刊文献+

逆M-矩阵的判定及并行算法 被引量:5

The Judgement and Parallel Algorithm for Inverse M-matrixes
下载PDF
导出
摘要 给出了任意一个n阶非负实方阵A为逆M-矩阵的一种简单方便的判定方法.利用此方法,使一个任意阶矩阵A逐次降阶为最后只需利用逆M-矩阵的定义判定其是否为逆M-矩阵,从而可以判定A是否为逆M-矩阵,并对其算法及实现问题进行了研究. A simple and convenient judging method will be given. It is used to judge whether an n×n nonnegative real matrix A is an inverse M-matrix or not. By using the method, we reduce the order of an n×n matrix A gradually until the reduced matrix can be judged by the definition of inverse M-matrixes. At the same time, aglorithm and its operation problem are also been studied.
机构地区 燕山大学
出处 《北华大学学报(自然科学版)》 CAS 2004年第2期97-103,共7页 Journal of Beihua University(Natural Science)
关键词 M-矩阵 逆M-矩阵 正定矩阵 并行算法 M-matrix Inverse M-matrix Positive definite matrix Parallel algorithm
  • 相关文献

参考文献8

  • 1[1]RA Willoughby. The Inverse M-matrix Problem[J ]. Linear Algebra App, 1977,1 (18): 75 ~ 94.
  • 2[2]S Martinez, G Michon, J San Martin. Inverses of Ultrametric Matrices Are of Type[J]. Siam J. Matrix Analysis Appl,1994,15: 98~ 106.
  • 3[3]Reinhard Nabben, Richard S, Varga. A Linear Algebra Proof That the Inverse of A Strictly Ultrametric Matrix Is a Strictly Diagonally Dominant Matrix[J ]. Siam J. Matrix Anal, 1994,1 (15): 107 ~ 113.
  • 4[4]JJ Mcdonald, M Neumann, H Schneider, et al. Inverse M-matrix in Equalities and Generalized Ultrametric Matrixes[J].Linear Algebra Application, 1995,220: 321 ~ 341.
  • 5[5]CR Johnson, RL Smith. The Completion Problem for M-matrix and Inverse M-matrix [J ]. Linear Algebra and Its Application, 1996,241 ~ 243,655 ~ 667.
  • 6[6]R Charles, Johnson, Ronald L Smith. The Symmetric Inverse M-matrix Completion Problem[J]. Linear Algebra and Its Application, 1999,290:193 ~ 212.
  • 7[7]RJ Plemmons. The Decription for the M-matrices Character I-Nonsingular M-matrix[J]. Linear Algebra and Application,1997,18:175 ~ 188.
  • 8[8]A Berman, RJ Plemmons. Nonnegative Matrixes in the Mathematical Science[M]. New York: Academic Press, 1979.

同被引文献36

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部