期刊文献+

基于增强转移网络(ATN)的室外移动机器人道路图像理解 被引量:3

Road Image Recognition Based on ATN for Outdoor Mobile Robot
下载PDF
导出
摘要 道路图像理解是室外移动机器人视觉导航自主驾驶研究中的一个关键技术 ,由于基于视觉导航的室外移动机器人自主驾驶时 ,对实时性和鲁棒性要求很高 ,因此 ,为了满足室外移动机器人自主驾驶的实时性和鲁棒性要求 ,将人工智能研究句法分析中的一个形式体系——增强转移网络 (ATN )成功地应用于室外移动机器人的道路理解中 ,进而提出了基于 ATN的室外移动机器人道路图像理解算法 ,该算法在统一的 ATN构建思想指导下 ,针对不同的道路情况 ,不仅可以灵活地构建出不同的道理理解 ATN网络 ,还可达到本质上的统一及应用上的灵活。经实验检验 ,该算法在满足系统要求的鲁棒性条件下 ,具有非常高的实时性 。 Road image recognition is a key technique for vision navigation of outdoor mobile robot. Because vision navigation of outdoor mobile robot requires good robustness and rigid time limitation for real time autonomous driving, in order to satisfy the request of good robustness and rigid time limitation, in this paper, we applied successfully Augmented Transition Networks (ATN), which is a kind of method used for sentence parsing in the artificial intelligence field, to the road image recognition of outdoor mobile robot, and proposed a road image interpretation algorithm based on the ATN. The characteristic of the ATN is, aiming at the different road condition, the algorithm can make up of different ATN, but all the ATN are constructed by the uniform construction rules. Therefore, the construction of the ATN is very flexible in application, and the essence of the ATN is coherent yet. The algorithm has good robustness and real time performance, and has been verified by the experiment that it can meet the needs for high speed autonomous vision navigation of outdoor mobile robot.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2004年第3期380-384,共5页 Journal of Image and Graphics
关键词 增强转移网络 移动机器人 道路图像理解 视觉导航 自主驾驶 augmented transition networks(ATN), mobile robot, road image recognition, vision navigation
  • 相关文献

参考文献5

二级参考文献5

  • 1张朋飞 艾海舟 等.高速公路车道线的快速检测跟踪算法[J].机器人,1999,21(7):579-587.
  • 2Kuan D,IEEE Trans Pattern Anal Mach Intell,1988年,10卷,5期,648页
  • 3Liu Jianzhuang,Proc of 1993 IEEE Region 10 Conference Computer Commune Control Power Engine,1993年,1130页
  • 4Chao Y,IEEE Trans Syst Man Cybern,1996年,26卷,2期,180页
  • 5艾海舟,张朋飞,何克忠,江潍,张军宇.室外移动机器人的视觉临场感系统[J].机器人,2000,22(1):28-32. 被引量:13

共引文献71

同被引文献32

  • 1吴宴华,须文波.随机自动学习机在BP神经网络中的应用[J].微计算机信息,2006(01Z):179-181. 被引量:2
  • 2王宏,何克忠,张钹.智能车辆的自主驾驶与辅助导航[J].机器人,1997,19(2):155-160. 被引量:28
  • 3Kluge K. and Lakshmanan S., A Deformable Template Approach to Lane Detection[C], In:Proc. IEEE Intelligent Vehicles'95, Detroit, MI, pp.54-59.
  • 4徐士良.常用算法程序集[M],(第二版)[M].清华大学出版社,..
  • 5YUE Wang, Dinggang Shen, Eam Khwang Teoh. Lane Detection Using Spline Model[J]. Pattern Recognition Letters,2000, 21:677-689.
  • 6YUE Wang, Eam Khwang Teoh, Dinggang Shen. Lane Detection and Tracking Using B-Snake[J]. Image and Vision Computing,2004,22:269-280.
  • 7Kluge K. and Johnson G., Statistical Characterization of The Visual Characteristics of Painted Lane Marking[C]. In Proc IEEE Intelligent Vehicles'94,pp. 109-140.
  • 8Henry Schneiderman and Marilyn Nashman. A Discriminating Feature Tracker for Vision-Based Autonomous Driving[J]. IEEE Transactions on robotics and automation December 1994,10,(6).
  • 9Pomerleau, DA[Dean A.], Visibility Estimation from a Moving Vehicle Using the RALPH Vision System, DARPA97(339-344).
  • 10Desouza G N, Kak A C. Vision for Mobile Robot Navigation: A Survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(2):237-267.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部