期刊文献+

不连续电流型Buck-Boost变换器二参数分岔的数值研究 被引量:4

Numerical Study of Two-Parameter Bifurcations for the Discontinuous Current-Programmed Buck-Boost Converters
下载PDF
导出
摘要 基于分段光滑映射方程,得到了输入电压E和负载电阻R同时变化时,不连续运行模式下电流型Buck Boost变换器的二参数分岔动力学行为图,得到了发生分岔时映射雅可比矩阵特征值的跃变特征———以不连续的方式跳出复平面上的单位圆.结果表明,映射总有某个或某些轨道点位于相平面中不同区域的边界上,即映射随着输入电压和负载电阻的变化会发生边界碰撞分岔现象,如由周期态到周期态以及由周期态到混沌态的分岔. Based on piecewise smooth iterative maps, the two-parameter bifurcation diagrams of the discontinuous current-programmed Buck-Boost converter' s dynamical behavior are presented when both input voltage E and load resistance R vary simultaneously. It shows that some eigenvalues of the Jacobian matrix jump over the unit circle in a discontinuous way as a bifurcation once occurs, and there are some orbit points lying on the boundaries which separate phase plane into different regions. And results indicate that the border collision bifurcations and chaos exist widely when both the input voltage and load resistance vary, e. g., the bifurcation from a periodic orbit to another periodic orbit or chaotic orbit.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2004年第4期348-351,共4页 Journal of Xi'an Jiaotong University
基金 重庆大学高电压与电工新技术教育部重点实验室资助项目
关键词 分段光滑 二参数 边界碰撞分岔 混沌 Bifurcation (mathematics) Chaos theory Electric resistance Matrix algebra Numerical analysis Piecewise linear techniques
  • 相关文献

参考文献1

二级参考文献6

  • 1Wood J R. Chaos: a real phenomenon in power electronics[J]. IEEE Transaction on Circuits and Systems I, 1989,35(2) : 115~124.
  • 2Deane J H B, Hamill D C. Instabiligy, subharmonics,and chaos in power electronic systems[J].IEEE Transaction on Power Electronics, 1990, 5(3). 260-268.
  • 3Hamill D C, Deane J H B, Jefferies D J. Modeling of chaotic DC/DC converters by iterated nonlinear mappings[J]. IEEE Transaction on Power Electronics,1992,7(1):25~36.
  • 4Fossas E, Olivar G. Study of chaos in the buck converter[J]. IEEE Transaction on Circuits and Systems I, 1996,43(1) : 13~25.
  • 5Bemardo M D, Garofalo F, Glielmo L, et al. Switching, bifurcation, and chaos in DC/DC converters[J]. IEEE Transaction on Circuits and Ssystems I,1998,45(2) : 133~141.
  • 6Banerjee S, Gredbogi C. Border collision bifurcations in two-dimensional piecewise smooth maps[J]. Phys Rev E, 1999,59(4):4052~4061.

共引文献6

同被引文献24

  • 1赵益波,罗晓曙,方锦清,汪秉宏.电压反馈型DC-DC变换器的稳定性研究[J].物理学报,2005,54(11):5022-5026. 被引量:32
  • 2吴俊娟,邬伟扬,孙孝峰.并联BUCK变换器中的混沌研究[J].中国电机工程学报,2005,25(22):51-55. 被引量:14
  • 3LIU Congwei, WENG Haihong, SUN Xudong, et al. Research of stability of double fed induction motor vector control system [C]//Proc 5th Int Conf on Electrical Machines and Systems. Piscataway, NJ, USA: IEEE, 2001: 1203-1206.
  • 4GONZAGA D P, BURIAN Y Jr. Small-variation linear model of the three-phase double-fed induction motor under synchronous operation: stability [ J]. Euro Trans Electr Power, 2005, 15 (4): 325-342.
  • 5KUROE Y, HAYASHI S. Analysis of bifurcation in power electronic induction motor drive systems [C]// Power Electronics Specialists Conference. Milwaukee, WI, USA: IEEE, 1989: 923-930.
  • 6TSE C K. Complex behavior of switching power converters [M]. Boca Raton, USA: CRC Press, 2003.
  • 7GAO Y, CHAU K T. Hopf bifurcation and chaos in synchronous reluctance motor drives [J]. IEEE Trans Energy Conversion, 2004, 19 (2): 296-302.
  • 8BANAKAR H, LUO C, OOI B T. Steady-state stability analysis of doubly-fed induction generators under decoupled P-Q control [J]. IEE Proc Electr Power Appl, 2006, 153 (2): 300-306.
  • 9PENA R, CLARE J C, ASHER G M. Doubly fed induction generator using back-to-back PWM converters and its application to variable speed wind-energy generation [J]. IEE Proc Electr Power Appl, 1996, 143 (3) : 231-241.
  • 10LEDESMA P, USAOI.A J. Doubly fed induction generator model for transient stability analysis [J]. IEEE Trans Energy Conversion, 2005, 20 (2) : 388-397.

引证文献4

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部