期刊文献+

形状记忆合金纤维复合材料的等效力学行为 被引量:3

Equal-effective mechanical behavior of Shape Memory Alloys fiber-reinforced composite
下载PDF
导出
摘要 在Aboudi提出的胞元模型以及Liu等建立的形状记忆合金的本构模型的基础上,由Legendre多项式,假设每个子胞元的位移场、应变场和应力场,再由子胞元间交界面的应力连续条件和外荷载边界条件推导出基体为弹塑性材料的形状记忆合金纤维复合材料的胞元模型;模拟了呈周期对称的形状记忆合金纤维复合材料受轴向单向拉伸、横向拉伸和横向剪切荷载作用下的等效力学行为,与有限元解进行了比较,结果基本一致。与有限元法比较起来,本文推导出的形状记忆合金纤维复合材料的胞元模型更具高效性。 Based on the cell models for elastic-viscoplastic composite proposed by Aboudi and Shape Memory Alloys (SMAs) constitutive model established by Liu, and others, the models of cells are derived for SMA fiber-reinforced composite, in which the matrix is assumed to be elastic-plastic work-hardening materials and SMAs fibers are imbedded in the matrix in the form of a double periodic array. In terms of the Legendre polynomials, the displacement distribution, strain field and stress field in each subcell are given. The displacements and stress components along the interfaces of subcells are considered to be continuous, and load boundary conditions which applied in the subcells is also formulated. On such basis, the relation of average stress and strain for SMAs fiber-reinforced composites are obtained, furthermore the equal-effective behavior of periodic symmetrical SMA fibrous composite material under axial tension, transverse tension and transverse shear are simulated. The result of cell models is in agreement with finite element results by comparison, however cell models for Shape Memory Alloys fiber-reinforced composites are more efficient than finite element method.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2004年第2期236-240,246,共6页 Chinese Journal of Computational Mechanics
基金 铁道部科技开发基金(99842) 建设部科研项目(02-1-1.22) 广州市教委科研项目(01-5)资助项目.
关键词 形状记忆合金 复合材料 胞元模型 等效力学行为 LEGENDRE多项式 位移场 应变场 应力场 Boundary conditions Composite materials Elastoplasticity Fiber reinforced materials Viscoplasticity
  • 相关文献

参考文献6

  • 1刘爱荣,潘亦苏,周本宽.形状记忆合金的研究进展[J].材料导报,2001,15(5):34-36. 被引量:5
  • 2Aboudi J. Closed form constitutive equations for metal matrix composites[J]. Int J Engng Sci , 1987,25(9) : 1229-1240.
  • 3Aboudi J. Effect behavior of inelastic fiberreinforced composites [J]. Int J Engng Sci, 1984, 22(4) :439-449.
  • 4刘爱荣,潘亦苏,周本宽.形状记忆合金热力学行为的模拟[J].计算力学学报,2002,19(1):48-52. 被引量:7
  • 5Aboudi J. Closed form constitutive equations for metal matrix composites[J]. Int J Engng Sci, 1987,25(9):1229-1240.
  • 6Aboudi J. Effect behavior of inelastic fiberreinforced composites[J]. Int J Engng Sci, 1984,22(4):439-449.

二级参考文献24

  • 1杜彦良,聂景旭.主动探测裂纹和控制裂纹扩展的智能材料结构[J].力学进展,1994,24(4):499-510. 被引量:21
  • 2[1]Achenbach M. A model for memory alloys in plane strain[J].Int J Solids Struct, 1986,22(2):171-193.
  • 3[2]Graesser E J. A proposed three-dimensional consti-tutive model for shape memory alloys[J].J Intell Mater Syst and Struct, 1994,5:78-89.
  • 4[3]Tanaka K. A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior[J].Res Mechanica, 1996,18:251-263.
  • 5[4]Liang C, Rogers C A. One-dimensional thermome-chanical constitutive relations for shape memory materials[J].J of Intell Mater Syst and Struct, 1990,1:207-234.
  • 6[5]Brinson L C. One dimensional constitutive behaviorof shape memory alloys: thermomechanical deriva-tion with non-constant material functions[J]. J Intell Mater Syst and Struct, 1993,4:229-242.
  • 7[6]Boyd G, Lagoudas D C. Thermomechanical consti-tutive model for shape memory materialspart I: the monolithic shape memory alloy[J].Int J Plasticity,1996,12:805-842.
  • 8[7]Sun Q P, Hwang K C. Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloys -I. derivation of general relations[J].J Mech Phys Solids, 1993,41(1):1-17.
  • 9[8]Trochu F, Yuan Y Q. Nolinear finite element simu-lation of superelastic shape memory alloy parts[J].Computers & Structure, 1997,62(5):799-810.
  • 10[9]Leblond J B, Devaux J, Devaux J C. Mathematical modeling of transformation plasticity in steels, I: Case of ideal - plastic phases[J].International of plasticity, 1989,5:551-572.

共引文献10

同被引文献129

  • 1张臻,沈亚鹏,王健.形状记忆合金短纤维增强弹塑性基体复合材料的力学行为[J].复合材料学报,2004,21(6):173-178. 被引量:7
  • 2姜袁,彭刚.SMA阻尼器在土木结构被动控制中的运用[J].应用力学学报,2004,21(4):88-92. 被引量:3
  • 3方志,梁栋,蒋田勇.不同粘结介质中CFRP筋锚固性能的试验研究[J].土木工程学报,2006,39(6):47-51. 被引量:53
  • 4常崇义,刘书田,王成国.单向纤维复合材料粘弹性性能预测[J].计算力学学报,2006,23(4):414-418. 被引量:13
  • 5陶宝祺.智能材料结构[M].北京:国防工业出版社,1999..
  • 6Cox J V, Guo J. Modeling the stress state dependency of the bond behavior of FRP tendon[A]. Fourth International Symposium on FRP Reinforcement for RC Struetures[C]. SP-188, American Concrete Institute(ACI), 1999: 791-805.
  • 7Cox J V, Herrmann L H. A Plasticity Model for the Bond Between Matrix and Reinforcement[A]. Composites 92.. Recent advances in Japan and the United States, Proc. 6^th Japan-U. S. Conference on Composite Materials[-C], 1992.
  • 8Cox J V, Herrmann L R. Development of a plasticity bond model for steel reinforcement[J]. Mechanics of Cohesive-frictional Materials, 1998,3(2) : 155-180.
  • 9Cox J V, Herrmann L R. Validation of a plasticity bond model for steel reinforcement[J]. Mechanics of Cohesive-frictional Materials, 1999,4(4) : 361-389.
  • 10Cox J V, Yu H. Radial elastic stiffness associated with the bond between steel bars and concrete[J]. ACI Structural Journal ,2001,98(1) : 16-27.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部