摘要
采用基于神经元的自学习控制算法对被控对象进行仿真研究 ,给出相应的控制算法 ,并对线性对象、非线性对象进行仿真对比 ,结果表明这种算法既可取得较好的控制品质 ,又能避免常规 PID控制参数不易实时调整的不足。
A type of self-studying control algorithm based on artificial nerve cell is adopted to do the research on the simulation of the controlled object, and the corresponding control algorithm is given. Simulation of the objects of linear and nonlinear is done as well. The result indicates that this algorithm can not only produce a preferable control quality, but also overcome the disadvantage that the parameters of the classical PID control can be easily adjusted in real-time.
出处
《山西焦煤科技》
2004年第2期17-19,21,共4页
Shanxi Coking Coal Science & Technology
关键词
神经元
自适应PID控制
自学习控制算法
控制参数
learning algorithm
Adaptive control
Artificial nerve cell
The parameters of control