期刊文献+

位势问题中的自然边界积分方程 被引量:1

The Natural Boundary Integral Equation in the Potential Problems
下载PDF
导出
摘要 研究位势问题中边界积分方程,通过分部积分变换消除了常规的位势导数边界积分方程中超奇异积分, 从而获得二维位势问题的自然边界积分方程。该积分方程仅含强奇异积分。基于自然边界积分方程的边界元法 比常规边界元法得到更加准确的边界位势导数和内点位势导数。 This paper studies the BIE in the potential problems. A series of transformations are manipulated on the conventional potential derivative BIE in order to eliminate the hyper-singularity. It leads to a new natural BIE in the two-dimensional potential problems. The natural BIE only contains the strongly singular integral. As a result, another boundary element analysis according to the natural BIE can obtain more accurate potential derivatives on the boundary in comparison with the conventional BEM.
出处 《燕山大学学报》 CAS 2004年第2期122-124,140,共4页 Journal of Yanshan University
基金 国家自然科学基金资助项目(No.10272039)。
关键词 边界元法 位势 自然边界积分方程 超奇异积分 BEM, potential, natural BIE, hypersingular integral.
  • 相关文献

参考文献1

共引文献3

同被引文献8

  • 1牛忠荣,王左辉,胡宗军,周焕林.二维边界元法中几乎奇异积分的解析法[J].工程力学,2004,21(6):113-117. 被引量:13
  • 2Martin P A, Rizzo F J, Gonsalves I R. On hypersingular integral equations for certain problems in mechanics [J].Mech Res Commun, 1989, 16: 65-71.
  • 3Sladek V, Sladek J. On a new BEM formulation for 3D problems in linear elasticity[J]. Eng Anal Bound Elem,1992, 9: 273-275.
  • 4Hadamard J. Lectures on Cauchy's problem in linear partial diffesential equations[M]. New York:Dover,
  • 5Tanaka M, Sladek V, Sladek J. Regularization Techniques applied to boundary element methods[J]. Appl Mech Rev,1994, 47(10): 457-499.
  • 6Gray L J, Martha L F, Ingraffea A R. Hypersingular integrals in boundary element fracture analysis[J]. Int J Numer Methods Eng, 1990, 29(6): 1 135-1 158.
  • 7Sladek V, Sladek J, Tanaka M. Optimal transformations of the integration variables in computation of singular integrals in BEM[J]. Int J Numer Methods Eng, 2000, 47: 1263- 1 283.
  • 8牛忠荣,王秀喜,周焕林.边界元法计算近边界点参量的一个通用算法[J].力学学报,2001,33(2):275-283. 被引量:20

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部