期刊文献+

一种新的用于二维弹性静力学的快速多极边界元法 被引量:2

A New Fast Multipole BEM for 2D Elastostatics
下载PDF
导出
摘要 快速多极边界元法(fast multipole BEM)是近几年发展起来的边界元新型算法。本文提出了一种新型的适合二维弹性静力学问题的快速多极边界元格式,并用于含有多个夹杂的二维复合材料的应力分析。数值结果表明这种方法非常适合解决大规模问题。 Fast multipole BEM is a new algorithm developed for BEM these years. In this paper, a new fast multipole BEM for 2D elastostatics is presented and used for stress analysis of 2D composite materials with many inclusions. Numerical results show this method is applicable for certain large scale problems.
出处 《燕山大学学报》 CAS 2004年第2期146-149,共4页 Journal of Yanshan University
基金 国家自然科学基金资助项目(No.10172053)。
关键词 快速多极边界元法 二维复合材料 二维弹性静力学 边界积分方程 FMM boundary element method, fast multipole, 2D elastic body with inclusions.
  • 相关文献

参考文献9

  • 1Yamada Y, Hayami K. A multipole boundary element Method for Two Dimensional Elastostatics. TechnicalReports, 1995, Departmerit of Mathematical Engineering and Information Physics, Faculty of Engineering, The University of Tokyo, METR 95-07:1-20
  • 2Yao Zhenhan, Wang Pengbo, Kong Fanzhong. Simulation of 2D elastic solids with randomly distributed inclusions without or with interphases by BEM. In: Proc of the 3rd Iht Confon Boundary Element Techniques. Beijing,2002
  • 3Wang Haitao, Yao Zhenhan Application of fast multipole BEM for simulation of 2D elastic body with large number of inclusions.In:Proc of the 3rd Int Confon Boundary Element Techniques. Beijing,2002
  • 4Rokhlin V. Rapid solution ofintegral equations ofclassical potential theory. JComputhys,1985,(60):187-207
  • 5Greengrad L, Rokhlin V. A fast algorithm for particle simulation.J Comiut Phys,1997,(135):280-292
  • 6Peirce A P, Napier JAL. A spectral multipole method for efficient solutions of large scale boundary element models in elastostatics.Int J Numer Methods Eng,1995,(38):4009-4034
  • 7Nishimura N, Yushida K, Kobayashi S. A fast multipole boundary integral equation method for crack problems in 3D. Engineering Analysis with Boundary Elements, 1999,(23):97-105
  • 8Hrycak T, Rokhlin V. An improved fast multipole algorithm for potential fields. SIAM J Sci Comput,1998,(19):1804-26
  • 9Cheng H, Gsreengard L, Rokhlin V. A fast adaptive multipole algorithm in three dimensions. J Comput Phys, 1999,(155):468-498

同被引文献23

  • 1雷霆,姚振汉,王海涛.三维快速多极边界元高性能并行计算[J].清华大学学报(自然科学版),2007,47(2):280-283. 被引量:5
  • 2Rokhlin V.Rapid solution of integral equations of classical potential theory[J].J Comput Phys,1985,60:187-207.
  • 3Greengard L,Rokhlin V.A fast algorithm for particle simulations[J].J Comput Phys,1987,73:325-348.
  • 4Liu Y J,Nishimura N.The fast multiple boundary element method for potential problems:A tutorial[J].Engineering Analysis with Boundary Elements,2006,30:371-381.
  • 5Hrycak T,Rokhlin V.An improved fast multiple algorithm for potential fields[J].SIAM J SCI Compute,1998,19(6):1804-26.
  • 6姚振汉,徐俊东.快速多极边界元法在动力学问题中的若干应用[C]// 2005全国结构动力学学术研讨会.海南省海口市,中国振动工程学会结构动力学专业委员会.2005:19-20.
  • 7Koopmann G H, Song Limin, John B. Fahnline. A method for computing acoustic fields based on the principle of wave superposition. & Acoust. Soc. Am., 1989; 86(6): 2433- 2439.
  • 8Alexandre Leblanc, Ros Kiri Ing, Antoine Lavie. A wave superposition method based on monopole sources with unique solution for all wave numbers. Aeta Acustica United with Ac'ustica, 2010; 96:1- 6.
  • 9Golberg M A, Chen C S. The method of fundamen- tal solutions for potential Helmholtz and diffusion prob- lems. Boston: Computational Mechanics Publications, 1998:131 -136.
  • 10Song Limin, Koopmann G H, John B. Fahnline. Numeri- cal errors associated with the method of superposition for computing acoustic fields. J. Acoust. Soc. Am., 1991; 89(8): 2625- 2634.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部