期刊文献+

传感器与固体电子学中非线性函数多项式拟合的规范化 被引量:17

Normalizing the Polynomial-Match for a Non-Linear Function in Sensors and Solid Electronics
下载PDF
导出
摘要 多项式可用于非线性信号的拟合,关键在于求解其各项系数。对于任何非线性函数,文中提出都有一个规范化的拟合方法。相应有一个规范化的多项式。该规范化多项式是以整数n为底的幂级数,最大幂次n_(max)是x坐标区间的等分数,其系数可用一个规范化的矩阵积得到。我们给出了固体电子学中的两个应用实例。当x坐标区间分段拟合应用时,还讨论了函数及其导数计算值的连续性条件,并以正弦函数不同区间的展开为例,作了演示。 A polynomial can be used for matching a non-linear function.The key is how to obtain its coefficients.A normalized polynomial method is presented here for matching any non-linear function. There is a corresponding normalized polynomial which consists of a power series with the integral n as base. The maximum base nmax is the division number within range of x abscissa. The coefficients of this normalized polynomial can be obtained from the multiplication of normalized matrixes. One example used in solid electronics are presented. When the polynomial match are used for two different sections in x abscissa, the conditions for continuation of the calculated values for these functions and their conductive are discussed and the development of sine function in different sections of abscissa is presented as an example.
出处 《电子器件》 CAS 2004年第1期1-4,共4页 Chinese Journal of Electron Devices
基金 国家自然科学基金(批准号69672015)
关键词 多项式拟合 非线性信号 规范化方法 规范化矩阵 polynomial match non-linear function a normalized method and a normalized matrix
  • 相关文献

参考文献5

  • 1王伟.人工神经网络原理[M].北京:北京航空航天大学出版社,1995.20-76.
  • 2Helena Szezerbicka and Matthias Becker,Genetic Algorithms:A tool for modeling simulation and optimization of complex system[J]. Cybernetics and systems: An International Journal, 1998, 29:639 - 659.
  • 3L.J. van der pauw, Philips Research Reports 1958,13:1.
  • 4Rymaszewski R., Electron. Lett.1967,3: 57.
  • 5ASTM F76-68,1971 Annual book,part 8:652-668.

共引文献43

同被引文献67

引证文献17

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部