期刊文献+

Classical simulation of atomic beam focusing and deposition for atom lithography 被引量:3

Classical simulation of atomic beam focusing and deposition for atom lithography
原文传递
导出
摘要 We start from the intensity distribution of a standing wave (SW) laser field and deduce the classical equation of atomic motion.The image distortion is analyzed using transfer function approach. Atomic flux density distribution as a function of propagation distance is calculated based on Monte-Carlo scheme and trajectory tracing method.Simulation results have shown that source imperfection,especially beam spread, plays an important role in broadening the feature width,and the focus depth of atom lens for real atomic source is longer than that for perfect source.The ideal focal plane can be easily determined by the variation of atomic density at the minimal potential of the laser field as a function of traveling distance. We start from the intensity distribution of a standing wave (SW) laser field and deduce the classical equation of atomic motion.The image distortion is analyzed using transfer function approach. Atomic flux density distribution as a function of propagation distance is calculated based on Monte-Carlo scheme and trajectory tracing method.Simulation results have shown that source imperfection,especially beam spread, plays an important role in broadening the feature width,and the focus depth of atom lens for real atomic source is longer than that for perfect source.The ideal focal plane can be easily determined by the variation of atomic density at the minimal potential of the laser field as a function of traveling distance.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2004年第4期187-189,共3页 中国光学快报(英文版)
基金 This work was supported by the Innovation Foundation of the Chinese Academy of Sciences under Grant No. A2K0009.
关键词 Atomic beams Laser applications Mathematical models Monte Carlo methods Optical transfer function Atomic beams Laser applications Mathematical models Monte Carlo methods Optical transfer function
  • 相关文献

同被引文献21

  • 1李同保.纳米计量与传递标准[J].上海计量测试,2005,32(1):8-13. 被引量:48
  • 2王育竹,徐震.激光冷却及其在科学技术中的应用[J].物理学进展,2005,25(4):347-358. 被引量:11
  • 3马艳,张宝武,郑春兰,马珊珊,李佛生,王占山,李同保.激光准直Cr原子束的实验研究[J].物理学报,2006,55(8):4086-4090. 被引量:9
  • 4McClelland J J, Shorten R E, Palm E C, et al. Laser-focused atomic deposition[J]. Science, 1993,262(5135) : 877.
  • 5MA Yah, LI Tongbao, WU Wen, et al. Laser-focused atomic deposition for nanoscale grating[J]. China Physics Letters, 2011,28 (7) : 073202.
  • 6Gupta R, McClelland J J, Jabbour Z J, et al. Nanofabrication of a two-dimensional array using laser-focused atomic deposition[J]. Applied Physics Letters, 1995, 67(10) : 1378.
  • 7Schulze Th, Brezger B, Mertens R, et al. Writing a superlattice with light forces[J].Applied Physics B, 2000,70 (5):671.
  • 8McClelland J J. Atom optical properties of a standing-wave light field[J].Journal of the Optical Society of America B, 1995,12(10) : 1761.
  • 9Anderson W R, Brandley C C, McClelland J J, et al. Minimizing feature width in atom optically fabricated chromium nanostructures[J]. Physical Review A, 1999, 59 (3) :2476.
  • 10Jurdlk E. Laser manipulation of atoms and nanofabrication [R]. Leuven: Katholieke Universiteit Leuven, 2001.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部