期刊文献+

基于小波分解的AR-SVR一类非平稳时间序列预测 被引量:8

AR-SVR Forecasting of no-stationary time series with tendency based wavelet decomposition
下载PDF
导出
摘要 本文提出了一种基于小波分解的均值具有趋向性的非平稳时间序列预测方法。方法首先利用具有平移不变性的小波分解,分离非平稳时间序列中的长期趋势和高频信息(短期行为),然后对高频信息构建自回归AR模型,而对于趋势则利用支撑向量回归(SVR)进行拟合,最后将各模型的预测结果进行叠加,从而得到原始序列的预测值。这样保证了充分拟合长期趋势的同时,避免了短期行为造成的过拟合。最后的实验结果表明本文提出的这类非平稳时间序列预测方法是有效的。 A non-stationary time series with tendency forecasting method based on translation invariant wavelet decomposition is proposed. Non-stationary time series with tendency are decomposed into tendency (smooth signal) and stochastic components (high frequency signal). The high frequency stochastic components are forecasted with auto-regression models, and the tendency with support vector regression, the addition of the forecasting result of tendency and that of stochastic components constitutes the forecasting result of the original time series. The forecasting method avoids the high frequency signal to be over-fitted, and better fits the tendency of the non-stationary time series so better forecasting performance can be obtained. Experiments show that the forecasting method proposed is effective.
出处 《信号处理》 CSCD 2004年第2期108-111,107,共5页 Journal of Signal Processing
关键词 小波分解 平移不变 均值趋向性 非平稳时间序列预测 支撑向量回归 自回归 wavelet decomposition translation invariant non-stationary time series with tendency support vector regression auto-regression
  • 相关文献

参考文献12

  • 1Peter J.Brockwell Richard A.Davis,Time Series:Theoryand Methods Springer-Vedag world publishing corpo—ration 1991.
  • 2Paul Cristea etal.Time Series Prediction with Wavelet Neural Networks.5^th Seminar Neural Network Application in Electrical Engineering September 25—272000.
  • 3Ashraf A.M.Khalaf,Kenji Nakayama.Time series prediction using a Hybrid model of neural Network and FIR filter’IEEE(1998)pp 1975—1980.
  • 4Hormik k M,Stinchcombe M.White H,Multilayer forward neural networks ale universal approximators.Neural Networks,1989,2(2):359—366.
  • 5Vladimir N.Vapnik,The Namre of Smfisficfl Learning Theory.Springer,NewYork,1995.
  • 6王文华,王宏禹.一种非平稳随机信号模型的时变参数估计算法性能研究[J].大连理工大学学报,1997,37(1):97-102. 被引量:19
  • 7HUANG N E,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear non—stationary time series analysis[J].Proc Roy Soc:A 1998,454:903—995.
  • 8张海勇,马孝江,盖强.一种新的时变参数AR模型分析方法[J].大连理工大学学报,2002,42(2):238-241. 被引量:9
  • 9Bai—Ling zhang,Richard Coggins,“Multiresolution Forecasting for Future Trading Using Wavelet Decompo—sitions”IEEE Trans.On Neural Networks,Vol.12,No.4,JULY 2001 pp765—775.
  • 10N.Satio,G.Beylkin,“Multiresolution representation using the autocorrelation functions of compactly support-ed wavelets”IEEE Trans.Signal Processing 41,3584—3590,1993.

二级参考文献6

  • 1王文华,王宏禹.一种非平稳随机信号模型的时变参数估计算法性能研究[J].大连理工大学学报,1997,37(1):97-102. 被引量:19
  • 2黄建国,现代谱估计.原理与应用(译),1994年
  • 3王宏禹,现代谱估计,1990年
  • 4吴今培,实用时序分析,1989年
  • 5王宏禹,随机数字信号处理,1988年
  • 6马孝江 余伯 张志新.一种新的时频分析方法—局域波法[J].振动工程学报,2000,13(5):219-224.

共引文献27

同被引文献77

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部