期刊文献+

一种基于模式类特征空间统计分布的离散模糊隶属度函数模型 被引量:5

A Model of Discrete Fuzzy Membership Function Based on Statistical Distribution of Features of Pattern
下载PDF
导出
摘要 本文提出了一种基于模式类特征空间统计分布的模糊隶属度函数模型,可有效地反映模式在特征空间中的真实分布,用于模式分类器输入特征的模糊化可获取更好的识别性能。作者以带钢表面缺陷检测系统为应用对象,以采自上海宝山钢铁公司冷轧带钢生产线的实际样本为训练集和测试集,对本文提出的模糊隶属度函数性能进行了测试,并与基于模糊C均值的隶属度函数进行了比较,测试结果显示,本文提出的基于模式类特征空间统计分布的模糊隶属度函数模型抗噪能力强,在提高分类器识别率和降低错误率上有明显优势。 In this paper a model of discrete fuzzy membership function based on statistical distribution of features of pattern is presented. It is used for the fuzziness of input features of classifier. It can describe the distribution of patterns in feature space truly and get better recognition result. The model presented in this paper is compared with the membership function based on fuzzy C-Means in test. The sample set used comes from the 1500 strip steel line in Bao Steel Company. The result reveals that the model of discrete fuzzy membership function presented in this paper has a strong ability of anti noises and has evident privilege in improving the precision and decreasing the error rate.
出处 《信号处理》 CSCD 2004年第2期170-173,共4页 Journal of Signal Processing
基金 国家经贸委技术创新计划项目 宝山钢铁公司立项
关键词 特征空间 统计分布 离散 模糊隶属度 模式分类罨 人工神经网络 pattern recognition feature space statistical distribution fuzzy membership classifier
  • 相关文献

参考文献6

  • 1Kenneth Rcastleman 朱志刚等译.数字图像处理[M].北京: 电子工业出版社,1999..
  • 2Lin C.T.,Lee C.S.,Neural Fuzzy Systems[M],New Jersey:Prentice Hall,1996.
  • 3J.C.Bezdek,S.K.Pal,Fuzzy Models for Pattern Recognition,IEEE Press,1992.
  • 4Abe,S.,Generalization Improvement of A Fuzzy Classifier with Pyramidal Membership Functions,Proceedings of 15th International Conference on Paaem Recognition.2000,Vol.2:211-214.
  • 5Yong—ShengYang,ChanEH.Y.,Lam F K.,et al,A New Fuzzy Classifier with Triangular Membership Functions,International Conference on Neural Networks,1997,Vol.1:479-484.
  • 6Paetz J.,Deducing Fuzzy Inference Systems with Different Numbers of Membership Functions from A Neuro—fuzzy Inference System,22nd International Conference of the North American Fuzzy Information Processing Society,NAFIPS,2003.14—19.

共引文献2

同被引文献40

  • 1田光明,陈光(?).基于熵调整模糊c-均值聚类的时频能量混合模型[J].信号处理,2005,21(1):1-6. 被引量:3
  • 2颜华,胡谋.基于模糊识别的神经网络分类器[J].上海铁道大学学报,1996,17(2):27-32. 被引量:5
  • 3张维强,徐晨,宋国乡.模拟电路故障诊断的小波包预处理神经网络改进算法[J].信号处理,2007,23(2):204-209. 被引量:6
  • 4中华人民共和国质量监督检验检疫总局,国家标准化管理委员会.土地利用现状分类GB/T21010-2007[S].2007.
  • 5Peng Wang, Shiyuan Yang. A New Diagnosis Approach for Handling Tolerance in Analog and Mixed-signal Circuits by Using Fuzzy Math [ J]. IEEE Transactions on Circuits and Systems Part 1 : Regular Papers, 2005, 52 (10) : 2118-2127.
  • 6Hagas Stanisaw. Multiple Soft Fault Diagnosis of Nonlinear circuits Using the Fault Dictionary Approach [ J]. Bulletin of the Polish Academy of Sciences: Technical Sciences (S0239-7528), 2008, 56(1): 53-57.
  • 7Aminian F, Aminian M, Collins H W. Analog Fault Diagnosis of Actual Circuits Using Neural Networks, IEEE Transaction on Instrumentation and Measurement [ J ], 2002, 15(3) :544-550.
  • 8Vladimir N Vapnik. An Overview of Statistical Network Theory [ J ]. IEEE Transaction On Neural Learning (S1045-9227), 1999, 10 (5) : 988-999.
  • 9Arnold Kaufrnann, MM Gupta. Introduction to Fuzzy Arithmetic : Theory and Applications [ J ]. International Journal of Approximate Reasoning, 1987, 1 ( 1 ) : 141- 146.
  • 10Urszula Boryczka. Finding Groups in Data: Cluster Analysis with Ants [ J]. Applied Soft Computing, 2009, 9 (1) : 61-70.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部