期刊文献+

一种新的完全决策表属性约简的高效算法 被引量:3

A New and Efficent Algorithm to Attribute Reductionin Incomplete Decision Table
下载PDF
导出
摘要 属性约简是粗糙集理论的核心问题之一,也是粗糙集有效算法研究的焦点。为获得最简明的规则集,通常希望能找出最小的属性约简集,但得到最优解是NP-hard的问题,通常采取启发式的算法得到近似最优解。文中研究了不完全决策表的属性约简,提出一种衡量不完全决策表属性重要性的标准,依此给出了一种新的进行属性约简启发式算法。对寻找对象的相似类的步骤则在排序和二分查找的基础上提出了一种新的高效的算法,这样就相应地使得属性约简的效率得到提高。此算法较好地解决了不完全决策表的属性约简问题。 Attribute reduction is one of the most important issues and the focus of the research on efficient algorithms in rough sets. To obtain the most concise rule set from a decision table, the attribute reduction should have the least cardinality. But this is a NP-hard problem and heuristic algorithms of multinomial time complexity are introduced to get the approximately best solution. The paper studies the attribute reduction incomplete decision tables and a criterion to weigh the importance of attributes in incomplete decision tables is defined and a new attribute reduction algorithm based on the criterion is introduced. An efficient algorithm to seek the set of objects similar to the considered object based on sort and binary search is also advanced in the paper and the efficiency of the attribute reduction algorithm is improved accordingly. The work of the paper solve the attribute reduction problem satisfiedly.
出处 《微机发展》 2004年第5期63-65,共3页 Microcomputer Development
基金 国家自然科学基金资助项目(60273043)
关键词 属性约简 粗糙集 完全决策表 启发式算法 二分查找 rough set theory incomplete decision table attribute reduction
  • 相关文献

同被引文献16

  • 1张正,黄泰松,左春.基于BP神经网络的灾情预测模型[J].计算机工程,2005,31(1):212-213. 被引量:7
  • 2赵荣利,崔志明,陈建明.一种改进的基于差别矩阵的属性约简方法[J].计算机技术与发展,2006,16(11):32-33. 被引量:3
  • 3李龙澍,程慧霞.一种面向对象产生式系统的体系结构和规则模型[J].计算机研究与发展,1997,34(6):415-420. 被引量:9
  • 4曾黄麟.粗糙集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 5Ferreira C. Gene Expression Programming: A New Adaptive Algorithm for Solving Problems[J ]. Complex Systems,2001, 13(2) :87 - 129.
  • 6Gao Haibo, Hong Wenxue, Cui Jianxin, et al. Optimization of Principal Component Analysis in Feature Extraction[ C]//In: Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation. Harbin, China: [ s. n. ], 2007: 3128 - 3132.
  • 7Baranyi P,Yam Yeung,Yang Chi- Tin,et al. SVD based reduction for subdivided rule bases[ C]//The Ninth IEEE International Conference on Fuzzy Systems. Hilton Palacio del Rio, San Antonio, Texas: [s. n. ] ,2000:712 - 716.
  • 8Feng Lihua,Hong Weihu. The practical Application of Fuzzy Information Analysis in Flood Forecasting[ C] //International Conference on Computational Science. Beijing, China: [ s. n. ], 2007:1056 - 1061.
  • 9Chang Fi- John, Liang Jin- Ming, Chen Yen- Chang. Flood Forecasting Using Radial Basis Function Neural Networks[J ]. IEEE Transactions on system, man, cybernetics- part C: Application and Reviews, 2001, 31 (4) : 530 - 535.
  • 10McCulloch D R, Lawry J, Cluckie I D. Real - Time Flood Forecasting using updated Linguistic Decision Trees [ C]// IEEE International Conference on Fuzzy Systems. Hong Kong,China: [s. n. ] ,2008:1935 - 1942.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部