期刊文献+

喷口自由剪切层自激振荡优势频率的预测 被引量:3

Prediction of Dominant Frequency of Self-Sustaining Oscillation Derived from Free Shear Layer
下载PDF
导出
摘要 研究了喷口边缘自由剪切层在下游扰流物干涉下产生自激振荡的机理 ,并进行了相应的实验。基于对空腔流自由剪切层自激振荡各阶模态的频率方程的合理改进 ,使之能预测喷口边缘自由剪切层在下游扰流物干涉下所致的自激振荡的模态频率。实验结果表明 ,采用改进后的空腔流自由剪切层自激振荡的频率方程能较好地预测喷口自由剪切层自激振荡所致噪声的优势频率 ,并能用于工程计算。另外 ,作者在考虑声与流动耦合的复杂性时提出 :声压与涡脱落相互作用的力阻抗所致的时延 2 πα中的 α与当地马赫数有关 ,而并非为常数 0 .2 5。声的传播是弹性介质中疏密波的传播 ,脱落涡的传播是流动介质中涡质量的传播 ,声与流动耦合的力阻抗的抗性取决于它们两者在耦合时所占有的主次地位 ,由实验数据表明 ,当 Ma∞ <0 .3 4时 ,力阻抗的抗性会由质量抗转变为弹性抗 ,即 α会由正值变为负值。 The mechanism of the self-sustaining pressure oscillation derived from the free shear layer between jet edge and downstream disturbing objects is investigated and some experiments are made. By the developed frequency equation for predicting the frequency of fluid induced self-sustaining pressure oscillation in cavities, dominant frequency of the self-sustaining oscillation derived from the free shear layer between jet edge and downstream disturbing object can be predicted. Experimental results show that the accuracy of the outcome predicted by the developed frequency equation is better and they can be used for engineering calculation. Besides, considering the complexity of acoustical and flow coupling, this paper points out that the ' α ' in time delay(2π α ) is not a constant 0 25 and an associate to local Mach number. The time delay(2π α ) is the phase of the mechanical impedance from interaction between sound pressure and the shed vortex. It is worthy to emphasize that sound wave is caused by looseness and density wave in elastic medium and the transmission of the shed vortex is a transmission of vortex mass in flow medium, so that the reactance quality of the mechanical impedance is decided by superior in of interaction between the sound wave and the vortex mass. Experiment shows that mass reactance is converted into an elastic reactance when Ma ∞<0 34, it means that the value of ' α ' turns positive into negative as well.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2004年第2期257-261,共5页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 喷口 自由剪切层 自激振荡 优势频率 噪声 free shear layer self-sustaining oscillation noise prediction
  • 相关文献

参考文献7

  • 1Welsh M C, Stokes A N, Parker R. Flow-resonant sound interaction in a duct containing a plate. PartⅠ. Semicircular leading edge[J]. J Sound Vib, 1984,31(95):305~323.
  • 2Stokes A N, Welsh M C. Flow-resonant sound in-teraction in a duct containing a plate. PartⅡ. Square leading edge[J]. J Sound Vib,1986,33(104):55~73.
  • 3Stoneman S A T, Hourigan K, Stokes A N, et al. Resonant sound caused by flow past two plates in tandem in a duct[J]. J Fluid Mech,1988,(192):455~484.
  • 4Rossiter J E. Wind tunnel experiments of the flow over rectangular cavities at subsonic and transonic speeds[R]. ARC R & M 3458,1964.
  • 5Rossiter J E. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[R]. ARC R & M 3458,1966.
  • 6Heller H H, Bliss D B. Aerodynamically induced pressure oscillations in cavities: physical mechanisms and suppression concepts[R]. AFFDL-TR-74-133,1975.
  • 7田春,张强,李青.流动诱导空腔振荡预测方法的改进[J].南京航空航天大学学报,2002,34(2):173-177. 被引量:9

二级参考文献12

  • 1[1]Heller H H, Bliss D B. Aerodynamically induced pressure oscillations in cavities: Physical Mechanisms and Suppression Concepts[R].AFFDL-TR-74-133,1975
  • 2[2]Bartel H W, McAvoy J M. Cavity oscillation in cruise missile carrier aircraft[R]. AFWAL-TR-81-3036,1981
  • 3[3]Shaw L L, et al. F-III generic weapons bay acoustic environment[J]. AIAA 87-0168,1987
  • 4[4]Dougherty Jr N S, Anderson C F, Parker Jr R l. An experimental study of edgetones from perforated wind tunnel walls[J]. AIAA 76-50,1976
  • 5[5]Soderman P T. Flow-induced resonance of screen-covered cavities[R]. NASA TP-3052,1990
  • 6[6]Karamcheti K. Sound radiation from rectangular cutout[R]. NACA TN-3487,1955
  • 7[7]Roshkom A. Some measurements of flow in a rectangular cutout[R]. NACA TN-3488,1955
  • 8[8]Rossiter J E. Wind tunnel experiments of the flow over rectangular cavities at subsonic and transonic speeds[R]. ARC R&M 3458,1966
  • 9[9]Heller H H, Holmes D G, Covert E E. Flow-induced pressure oscillations in shallow cavities[J]. J Sound & Vib,1971,18(4)
  • 10[10]Smith D L Shaw L L. Prediction of the pressure oscillations in cavities exposed to aerodynamic flow[R]. AFFDL-TR-34,1975

共引文献8

同被引文献23

  • 1李晓东,刘靖东,高军辉.空腔流激振荡发声的数值模拟研究[J].力学学报,2006,38(5):599-604. 被引量:41
  • 2CASALINO D, DIOZZI F, SANNINO R. Aircraft noise reduction technologies: a bibliographic review[J]. Aero- space Science and Technology, 2008, 12(1) : 1-17.
  • 3DOBRZNSKI W. Almost 40 years of airframe noise research., what did we achieve? [J]. Journal of Air- craft, 2010, 47(2): 353-367.
  • 4MONCLAR P. Technology programs for landing gear systems[C]. AIAA/CEAS International Air and Space Symposium and Exposition, Dayton, 2003.
  • 5LI Y, SMITH M G, ZHANG X. Identification and at- . t tenuation of a tonal-noise source on an mrcraft s landing gear[J]. Journal of Aircraft, 2010, 47(3) : 796-804.
  • 6DOBRZYNSKI W, CHOW L C, SMITH M, et al. Ex- perimental assessment of low noise landing gear compo- nent design[J]. Internation Journal of Aeroaeousties, 2010, 9(6): 763-786.
  • 7GUO Y P. A component-based model for aircraft land ing gear noise prediction[J]. Journal of Sound and Vi bration, 2008, 312(4-5): 801-820.
  • 8Yamada S, Sekiguchi K, Ikeda T. Aerodynamic noise generated from heat exchangers with a large inlet angle[J]. Inter Noise Meeting, 1999, 1: 173-176.
  • 9Sarohia V. Experimental investigation of the oscilla- tions in flows over shallow cavities[J]. AIAA Jour- nal, 1977, 15(7): 984-991.
  • 10Stallings R L, Wilcox F J. Experimental cavity pres- sure distributions at supersonic speeds[R]. USA: NASA Tech Pap, 1987:165-162.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部