期刊文献+

基因芯片数据的聚类分析 被引量:8

Clustering in DNA chip data analysis
下载PDF
导出
摘要 基因芯片技术是后基因组时代功能基因组研究的主要工具。由于采用了高效的并行DNA杂交技术,每次实验可以得到大量丰富的数据,因此其结果分析成为一项很有挑战性而且具有重要意义的工作。聚类分析是基因芯片数据分析中使用广泛的一类方法。基因芯片实验得到的大量数据通过聚类分析,可以得到很多有用的信息,其成功应用已广泛涉及到生物医学研究中的各个领域。本文介绍了基因芯片数据的聚类分析方法及其重要应用。 Microarray technology is the chief tool for functional genomics research. Adopting the high efficient and parallel DNA hybridization technology, we can achieve abundant data from each experiment, so the data analysis of microarrays becomes a challenge and significant task. Clustering is the most useful and widely used method of microarray data analysis. Abundant useful information can be obtained through the microarray clustering. There are many successful examples that have been applied to a wide of research fields of life science. The review presented the methods and applications of clustering analysis in DNA microarrays.
出处 《国外医学(生物医学工程分册)》 2004年第2期98-101,共4页 Foreign Medical Sciences(Biomedical Engineering Fascicle)
关键词 基因芯片 微阵列 基因表达谱 聚类分析 DNA chip microarray gene expression profiles clustering analysis
  • 相关文献

参考文献17

  • 1Lukashin AV, Fuchs R. Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters[J]. Bioinformatics, 2001, 17: 405-414.
  • 2Dudoit S, Yang YH, Callow MJ, et al. Statistical methods for identifying differenctially expressed genes in replicated cDNA microarray experiments[J]. Statistica Sinica, 2002,12:111-139.
  • 3Mclachlan GJ, Bean RW, Peel D. A mixture model-based approach to the clustering of microarray expression data[J]. Bioinformatics, 2002,18: 413-422.
  • 4Smet FD, Mathys J, Marchal M, et al. Adaptive quality-based clustering of gene expression profiles [J]. Bioinformatics, 2002, 18: 735-746.
  • 5Whitfield CW, Cziko AM, Robinson GE. Gene expression profiles in the brain predict behavior in individual honey bees[J]. Science, 2003,302: 296-299.
  • 6Nguyen DV, Rocke DM. Tumor classification by partial least squares using microarray gene expression data[J]. Bioinformatics, 2002, 18:39-50.
  • 7Rhodes DR, Miller JC, Haab BB. CIT: identification of differentially expressed clusters of genes from microarray data[J]. Bioinformatics,2002, 18: 205-206.
  • 8Sturn A, Alatko JQ. Genesis: cluster analysis of microarray data[J].Bioinformatics, 2002, 18: 207-208.
  • 9Xia Xu-hua, Xie Zheng. AMADA: analysis of microarray data [J].Bioinformatics, 2001, 17: 569-570.
  • 10Bozinov D, Rahnenfuhrer J. Unsupervised technique for robust target separation and analysis of DNA microarray spots through adaptive pixel clustering[J]. Bioinformatics, 2002,18: 747-756.

同被引文献87

引证文献8

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部