期刊文献+

水溶性非离子大分子与烷基硫酸钠同系物团簇化的比饱和簇集量 被引量:11

Specific Saturation Capacity of Clusterization in Cluster of ROSO_3Na with Water-soluble Nonionic Macromolecules
下载PDF
导出
摘要 研究了烷基硫酸钠同系物 ( ROSO3Na)与聚乙二醇 ( PEG)及聚乙烯吡咯烷酮 ( PVP)的γ-lgc曲线的双拐点特征 ,根据拟双平台现象求得烷基硫酸钠同系物对大分子的饱和簇集量Γ∞ ( mmol/L )和比饱和簇集量[Γ∞ ].由Γ∞ -c P 回归方程的斜率得到 ROSO3Na-PEG及 ROSO3Na-PVP体系的 [Γ∞ ]reg分别为 0 .3 94和0 .41 5 m/n. [Γ∞ ]随表面活性剂疏水基链长、大分子分子量及浓度的变化均很小 ,t检验结果表明回归值[Γ∞ ]reg与实验值 [Γ∞ ]exp之间无明显差异 ,因此超分子相互作用参数 [Γ∞ ]可以被视为不变量 . The characteristics of bis-transition points in γ-lgc curves of surface active sodium alkylsulfates with water-soluble nonionic macromolecules such as PVP or PEG were studied, and saturation capacity of clusterization Γ ∞ and specific saturation capacity of clusterization [Γ ∞] of surfactant on macromolecule were calculated in accordance with the phenomena of pseudo double-plateau. [Γ ∞] of ROSO 3Na changes little with the chain length of both surfactant and macromolecule, as well as concentration of macromolecule. [Γ ∞] reg are 8.96 and 3.74 mmol/L, or 0.394 m/n and 0.415 m/n for ROSO 3Na-PEG and ROSO 3Na-PVP respectively, which was obtained from regression of Γ ∞-c P. The results of t-test show that there is no significant difference between [Γ ∞] reg and [Γ ∞] exp, therefore, it is reasonable to express [Γ ∞], a supramolecular interaction parameter, as a constant for soft cluster of ROSO 3Na homologue with PEG or PVP respectively. It is deduced from the experimental results that the soft clusters are formed between normal pseudo-micelles of ROSO 3Na and macromolecules by supramolecular self-assembly force in which electrostatic interaction is dominant.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2004年第5期888-891,共4页 Chemical Journal of Chinese Universities
基金 国家自然科学基金 (批准号 :2 0 3 710 2 1)资助
关键词 水溶性非离子大分子 烷基硫酸钠同系物 团簇化 比饱和簇集量 静电超分子自组装 聚乙二醇 聚乙烯吡咯烷酮 Specific saturation capacity of clusterization Supramolecular self-assembly Sodium alkylsulfate Polyethyleneglycol(PEG) Polyvinylpyrrolidone(PVP)
  • 相关文献

参考文献10

二级参考文献19

  • 1[1]Rosen M. J.. Surfactants and Interfacial Phenomena[M], New York: John Wiley and Sons, 1989: 393-420
  • 2[4]Guéring P., Nilsson P. G., Lindman B.. J. Colloid and Interface Science[J], 1985, 105(1): 41-44
  • 3[5]Griffiths P. C., Stilbs P., Howe A. M. et al.. Langmuir[J], 1996, 12: 5 302-5 306
  • 4[6]Misselyn-Bauduin A. M., Thibaut A., Grandjean J. et al.. Langmuir[J], 2000, 16: 4 430-4 435
  • 5[7]Staples E., Thompson L., Tucker I. et al.. Langmuir[J], 1995, 11: 2 496-2 503
  • 6[8]Nilsson P. G., Lindman B.. J. Phys. Chem.[J], 1984, 88 : 5 391-5 397
  • 7[9]Shiloach A., Blankschtein D.. Langmuir[J], 1998, 14: 7 166-7 182
  • 8[10]Wang T. Z., Mao S. Z., Miao X. J. et al.. J. Colloid and Interface Science[J], 2001, 241: 465-468
  • 9[11]Lindman B.. J. Phys. Chem.[J], 1984, 88(21): 5 048-5 057
  • 10[12]Wüthrich K.. NMR of Proteins and Nucleic Acids[M], New York: John Wiley and Sons, 1986: 112-113

共引文献31

同被引文献197

引证文献11

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部