期刊文献+

钒氧化物纳米管的合成、结构及电化学性能 被引量:5

Synthesis,Structure and Electrochemical Performance of Vanadium Oxide Nanotubes
下载PDF
导出
摘要 采用流变相 -纳米自组装新方法合成了钒氧化物纳米管 ( VOx-NTs) ,并通过 XRD,SEM,TEM,Raman,ESR,TG-DTA,XPS及模拟电池等技术手段对产物的结构和性能进行了表征和测试 .结果表明 ,产物主要由钒氧化物纳米管组成 ,纳米管长为 1~ 1 0 μm,直径为 3 0~ 1 0 0 nm.纳米管壁由 3~ 1 0个 VOx 层构成 ,层间距为 3 .5 3 nm.Raman光谱反映了 V— O的伸缩或弯曲振动 ,层状微结构的晶格振动及模板剂的有机基团振动 .无明显精细结构的室温 ESR谱证明了 V4 +的存在 ,根据 TGA和 XPS求得产物中 V的平均化合价约为 + 4 .3 0 .VOx-NTs正极材料初始充电容量达到 40 4m A.h/g,放电容量为 3 83 m A.h/g,5 0次循环后放电容量衰减至 1 80 m A.h/g,可归因于充放电过程中 VOx-NTs正极材料在电解液中的溶蚀作用及复合电极中“孤岛效应” Vanadium oxide nanotubes (VO x-NTs) were synthesized in a rheological phase reaction followed by self-assembling process and characterized by XRD, SEM, TEM, Raman, ESR, TG-DTA, XPS, and simulated battery. The results show that the black products consist majority of VO x-NTs with length of 1—10 μm and diameter of 30—100 nm, whose walls consist of 3—10 VO x layers with interlayer distance of 3.53 nm. Raman spectrum indicates the stretching or bending vibration of V—O, lattice vibration of layered structure and organic group vibration of template. ESR spectrum with no superfine structure confirms the presence of V 4+ and the average valence of vanadium in the product is +4.30 on the basis of TG and XPS. The initial charge and discharge capacity of VO x-NTs are 404 and 383 mA·h/g, respectively. The discharge capacity decreases to 180 mA·h/g after 50 cyclee, which can be attributed to the VO x-NTs reacting with the electrolyte and isolating from the carbon particles during the charge-discharge.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2004年第5期904-907,共4页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号 :5 0 172 0 3 6 5 0 3 72 0 46) 教育部博士点专项科研基金 湖北省青年杰出人才科学基金(批准号 :2 0 0 2 AC0 0 8)资助
关键词 钒氧化物纳米管 合成 结构 电化学性能 流变相-自组装方法 锂离子二次电池 正极材料 Vanadium oxide nanotubes Electrochemical properly Rheological phase-self-assembly
  • 相关文献

参考文献20

  • 1Iijima S.. Nature[J], 1991, 345: 56-58
  • 2Heer W., Chatelain A., Ugarte D.. Science[J], 1995, 270: 1 179-1 180
  • 3Sander J. T., Alwin R. M. V., Cees D.. Nature[J], 1998, 393: 49-52
  • 4Leroux F., Koeue B. E., Nazar L. F.. J. Electrochem. Soc.[J], 1997, 144: 3 886-3 895
  • 5Spahr M. E., Petra S., Nesper R. et al.. J. Electrochem. Soc.[J], 1999, 146: 2 780-2 783
  • 6Krumeich F., Muhr H. J., Niederberger M. et al.. J. Am. Chem. Soc.[J], 1999, 121: 8 324-8 328
  • 7Clark J. H.. The Chemistry of Titanium and Vanadium[M], New York: Elsevier Press, 1968: 34-38
  • 8Julien C., Nazri G. A., Bergstrom O.. Phys. Status. Solidi B.[J], 1997, 201: 319-326
  • 9Abello L., Husson E., Repelin Y. et al.. Acta. Part A.[J], 1983, 39: 641-645
  • 10Batista de Carvalho L. A. E., Lourenco L. E., Marques M. P. M.. J. Mol. Struct.[J], 1999, 482: 639-646

二级参考文献15

  • 1赵家政,分析电子显微镜实用手册,1996年,29页
  • 2Wu C G,Science,1994年,264卷,1757页
  • 3Ohzuku, T.; Ueda, A. J.Electrochem. Soc. 1994, 141, 2972.
  • 4Ohzuku, T.; Ueda, A.; Nagayama, M. J. Electrochem. Soc.1993, 140, 186.
  • 5Gummow, R. J.; Dekock, A.; Thackeray, M. M. Solid State lonics 1994, 69, 59.
  • 6Momchilov, A.; Manev, V.; Nassalevska, A.; Kozawa, A. J.Power Sources 1993, 41,305.
  • 7Barboux, P.; Tarascon, J. M.; Shokoohi, F. K. J. Solid State Chem. 1991, 94, 18.
  • 8Xia, Y.; Yoshio, M. J. Electrochem. Soc. 1996, 143, 825.
  • 9Guohua, L.; Ikuta, H.; Uchida, T.; Wakihara, M. J.Electrochem. Soc. 1996, 143, 178.
  • 10Arora, P.; Popov, B. N.; White, R. E. J. Electrochem. Soc.1998, 145, 807.

共引文献101

同被引文献108

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部