期刊文献+

Walsh变换特征用于回声信号的识别 被引量:4

Recognition of echo signal using Walsh transformation
下载PDF
导出
摘要 随着水下目标降噪技术的进展,利用回声信号来探测和识别水下目标的越来越重要,水下目标识别是水声领域中存在的难题之一.以大量的水下目标回声信号资料为依托,借助Walsh变换的分析法,研究了脉冲声的回声识别问题,给出了回声信号的时频特性及其相应的特征向量,提取了43维的Walsh谱特征.结合ART神经网络,对一定范围对真假两类目标进行分类,可取得80%以上的正确识别率.该方法具有较好的实用性,是一条解决实际回声信号识别的有效途径. With decreased noise levels for underwater targets, the detection and recognition of underwater target becomes more and more important and yet underwater target recognition is one of the most difficult problems in processing underwater acoustic signals. In the paper, recognition problems of a pulse echo signal is investigated and time-frequency characters as well as character vector are given. The 43 dimensional Walsh spectrum features from different kinds of targets are extracted via Walsh transformation analysis based on echo signal data. By applying this in echo signal combined with ART networks, the correct recognition ratio can arrive 80% to true and false targets. This method possesses better practicability and is an effective way to solve real recognition problems of echo signal.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 2004年第2期221-223,共3页 Journal of Harbin Engineering University
关键词 WALSH变换 回声信号 ART神经网络 Algorithms Neural networks Spectrum analysis Walsh transforms
  • 相关文献

参考文献6

二级参考文献6

共引文献30

同被引文献26

  • 1宁小玲,赵绪明,程江涛.基于维谱和SVM的水下目标识别方法[J].微计算机信息,2008,24(7):196-197. 被引量:4
  • 2王锋,尹力,朱明洪.基于Hilbert-Huang变换的水声信号特征提取及分类技术[J].应用声学,2007,26(4):223-230. 被引量:17
  • 3Alpert JS, Thygesen K, Antman E, et al. Myocardial infarction redefined-a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol, 2000,36: 95
  • 4MartinT.Hagan Howard B.Demuth 著.戴葵译.神经网络设计[M].北京:机械工业出版社,2003..
  • 5LEFEUVRE P, ROSE G, GOSINE R, et al. Acoustic species identification in the Northwest Atlantic using dig- ital image processing[J]. Fisheries Research, 2000, 47(2): 137-147.
  • 6ROBOTHAM H, BOSCH P, GUTIIRREZ-ESTRADA J, et al. Acoustic identification of small pelagic fish species in Chile using support vector machines and neural net- works[J]. Fisheries Research, 2010, 102(1/2): 115- 122.
  • 7KORNELIUSSEN R, HEGGELUND Y, ELIASSEN I, et al. Acoustic species identification of schooling fish[J]. ICES Journal of Marine Science, 2009, 66(6): 1111-1118.
  • 8LOGERWELL A, WILSON C. Species discrimination of fish using frequency-dependent acoustic backscattering[J]. ICES Journal of Marine Scienc% 2004, 61(6): 1004-1013.
  • 9KLOSER R, RYAN T, SAKOV P, et al. Species identifi- cation in deep water using multiple acoustic frequencies[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59: 1065-1077.
  • 10REEDER D, JECH J, STANTON T. Broadband acoustic baekscatter and high-resolution morphology of fish: Mea- surement and modeling[J]. Journal of the Acoustical So- ciety of America, 2004, 116(2): 747-761.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部