期刊文献+

完全二部图K_(m,n)的K_(p,q)-因子分解 被引量:2

原文传递
导出
摘要 如果完全二部图K_(m,n)的边集可以划分为K_(m,n)的K_(p,q^-)因子,则称K_(m,n)存在K_(p,q^-)因子分解.给出K_(m,n)存在K_(p,q^-)因子分解的一个充分条件.同时证明:对于任意正整数k,当p:q=k:(k+1)时,K_(m,n)存在K_(p,q^-)因子分解,即Martin的BAC猜想成立.
作者 杜北梁 王建
出处 《中国科学(A辑)》 CSCD 北大核心 2004年第2期237-242,共6页 Science in China(Series A)
基金 国家自然科学基金(批准号:10071056)
  • 相关文献

参考文献9

  • 1Ushio K. G-designs and related designs. Discrete Math, 1993, 116:299-311
  • 2Bondy J A, Murty U S R. Graph Theory with Applications. London: Macmillan Press, 1976
  • 3Yamamoto S, Tazawa S, Ushio K, et al. Design of a balanced multiple-valued file organization scheme with the least redundancy. ACM Trans Database Systems, 1979, 4:518-530
  • 4Ushio K. P3-factorization of complete bipartite graphs. Discrete Math, 1988,72:361-366
  • 5Wang H. On K1,k-factorizations of a complete bipartite graph. Discrete Math, 1994, 126:359-364
  • 6Du B L. K1,p2-factorization of complete bipartite graphs. Discrete Math, 1998, 187:273-279
  • 7Du B L. K1,pq-factorization of complete bipartite graphs. Austral J Combin, 2002, 26:85-92
  • 8Du B L, Wang J. K1,k-factorizations of complete bipartite graphs. Discrete Math, 2002, 259:301-306
  • 9Martin N. Complete bipartite factorisations by complete bipartite graphs. Discrete Math, 1997, 167/168:461-480

同被引文献22

  • 1杜北梁,王建.完全二部图的P_(4k-1)-因子分解[J].中国科学(A辑),2005,35(2):206-215. 被引量:3
  • 2Ushio K. G-designs and related designs. Discrete Math, 1993, 116:299-311.
  • 3Bondy J A, Murty U S R. Graph Theory with Applications. London: Macmillan Press, 1976.
  • 4Yamamoto S, Ikeda H, Shige-eda S, et al. Design of a new balanced file organization scheme with the least redundancy, information and Control. 1975.28:156-175.
  • 5Yamamoto S, Tazawa S, Ushio K, et al. Design of a generalized balanced multiple-valued file organization scheme with the least redundancy. ACM Trans Database Systems, 1979, 4:518-530.
  • 6Ushio K, P3 factorization of complete bipartite graphs. Discrete Math, 1988, 72; 361-366.
  • 7Martin N. Complete bipartite factorisations by complete bipartite graphs. Discrete Math, 1997, 167 168:461 -480.
  • 8Du B L. K1,p^2-factorization of complete bipartite graphs, Discrete Math, 1998, 187:273-279.
  • 9Du B L, Wang J. K1,k-factorizations of complete bipartite graphs, Discrete Math, 2002, 259:301-306.
  • 10Wang H. P2k^-factorization of a complete bipartite graph. Discrete Math, 1993, 120:307-308.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部