期刊文献+

一类非线性复Boussinesq方程的初边值问题 被引量:3

The Initial Boundary Value Problem for a Class of Complex Semilinear Boussinesq Equations
下载PDF
导出
摘要 研究了一类非线性复Boussinesq方程的初边值问题:utt-auttxx-ibuttx-2dutxx=-αuxxxx+uxx+β(u2)xx, x∈(0,π),t>0,u(0,t)=u(π,t)=0,t>0,uxx(0,t)=uxx(π,t)=0,t>0,u(x,0)=ε2(x),ut(x,0)=ε2ψ(x),x∈(0,π).以复值富里埃级数的形式得出了该方程的整体解的适定性. This paper deals with the initial boundary value problem for the following damped Boussinesq equation:u_(tt)-au_(ttxx)-ibu_(ttx)-2du_(txx)=-αu_(xxxx)+u_(xx)+β(u^2)_(xx), x∈(0,π),t>0, u(0,t)=u(π,t)=0,t>0, u_(xx)(0,t)=u_(xx)(π,t)=0,t>0, u(x,0)=ε~2(x),u_t(x,0)=ε~2ψ(x),x∈(0,π).A global solution of the equation in the form of Fouries series is derived.
作者 林群
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2004年第2期147-151,共5页 Journal of Sichuan Normal University(Natural Science)
基金 四川省教育厅重点科研基金资助项目
关键词 BOUSSINESQ方程 整体解 初边值问题 Boussinesq equation Global solution Initial-boundary value problem
  • 相关文献

参考文献2

二级参考文献13

  • 1Miles T W. Solitary Waves[J]. Ann Rev Fluid Mech,1980,12:11~43.
  • 2Milewski P A, Keller J B. Three-dimensional water waves[J]. Studies in Applied Math,1996,37:149~166.
  • 3Tsutsumi M, Matabashi T. On the Cauchy problem for the Boussinesq-type equation[J]. Math Japonica,1991,36:371~379.
  • 4Bona J, Sachs R. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation[J]. Commun Math Phys,1988,118:12~29.
  • 5Kalantarov V K, Ladyzhenskaya O A. The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types[J]. T Sov Maths,1978,10:53~70.
  • 6Levine H A, Sleeman B D. A note on the nonexistence of global solutions of initial-boundary value problems for the Boussinesq equation utt=3uxxxx+uxx-12(u2)xx[J]. J Math Anal Appl,1985,107:206~210.
  • 7Varlamov V V. On the Cauchy problems for the damped Boussinesq equation[J]. Differential and Integral Equations,1996,9(3):619~634.
  • 8Boussinesq J. Theorie des ondes et de remous qui se progragent le long d'un canal recangulaier horizontal, et communiquant au liquide contene dans ce cannal des vitesses sensiblement pareilles de la surface au fond[J]. J Math Pures Appl,1872,17:55~108.
  • 9Bona J, Sachs R. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation[J]. Commun Math Phys,1988,118:12~29.
  • 10Tsutsumi M, Matahashi T. On the cauchy problem for the Boussinesqtype equation[J]. Math Japonica,1991,36:371~379.

共引文献5

同被引文献40

  • 1李楠,赖绍永.一类半线性Boussinesq方程Cauchy问题的渐近近似解[J].四川师范大学学报(自然科学版),2004,27(6):574-578. 被引量:1
  • 2Boussinesq J. Theorie des ondes et de remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contene dans ce canaldes vitesses sensiblement pareilles de la surface au foud[J]. J Math Pures Appl Ser,1872,17(2):55~108.
  • 3Tsutsumi M, Matahashi T. On the Cauchy problem for the Boussinesq-type equation[J]. Math Japonicae,1991,36:371~379.
  • 4Manoranjan V S, Ortega T, Sanz-Serna J M. Soliton and anti-soliton interaction in the "good" Boussinesq equation[J]. J Math Phys,1988,29:1964~1968.
  • 5Hirota R. Exact N- soliton solutions of the wave equation of long waves in shallow water and in nonlinear lattice[J]. J Math Phys,1973,14:810~814.
  • 6Clarkson P. New exact solution of the Boussinesq equation[J]. Eur J Appl Maths,1990,1:279~300.
  • 7Varlamov V V. On the Cauchy problem for the damped Boussinesq equation[J]. Differential and Integral Equations,1996,9(3):619~634.
  • 8Varlamov V V. On the initial boundary value problem for the damped boussinesq equation[J]. Discrete and Continuous Dynamical System,1998,4(3):431~444.
  • 9Lai S Y, Wu Y H. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation[J]. Discrete and Continuous Dynamical System,2003,3(3):401~408.
  • 10Tsutsumi Y, Zhang J. Instability of optical solutions for two-wave interaction model in cubic nonlinear medial[J]. Adv Math Sci Appl,1998,8(2):691-713.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部