摘要
建立了强收敛于方程x+Tx=f的解的带误差的Ishikawa迭代过程,其中T是一致光滑Banach空间中的一个在D(T)既不必有界又不必连续(因而不必Lipschitz)的k 次增生算子,推广了一些已有的结果.
In this paper, the strong convergence of Ishikawa iterative process with errors for a solution of the equation x+Tx=f is established, where T is a k-subaccretive operator in a uniformly smooth Banach space which is neither bound nor continuous (therefore nor Lipschitzian) on D(T). Some well-known results are generalized.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
2004年第2期160-164,共5页
Journal of Sichuan Normal University(Natural Science)
基金
重庆教委科学技术研究项目基金资助