期刊文献+

改进的MPCA方法及其在批过程故障诊断中的应用 被引量:5

Batch Process Monitoring and Fault Detection Based on an Improved MPCA
下载PDF
导出
摘要 基于传统的多方向主元分析(MPCA)常会导致误诊断,且对批生产过程难以保证在线状态监测和故障诊断的实时性,提出了一种改进的MPCA方法,该方法采用多模型非线性结构代替传统MPCA单模型线性化结构,克服了后者不能处理非线性过程和实时性问题,并避免了MPCA在线应用时预报未来测量值带来的误差,提高了批过程性能监测和故障诊断的准确性. An improved multiway principle component analysis (MPCA) for on-line batch process monitoring and fault detection was proposed. It integrates the time-delay windows of process dynamic behavior with the MPCA. Using multi-model instead of single model, the improved MPCA approach emphasizes on-line process performance monitoring and exactly fault detecting which results in extraordinary behavior of batch process.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第4期555-558,共4页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(60174024)
关键词 多方向主元分析 多模型 非线性批过程 在线监测 故障诊断 Diagnosis Failure analysis Monitoring Nonlinear systems Online systems Process control Real time systems
  • 相关文献

参考文献6

  • 1Louwerse D J, Smilde A K. Multivariate statistical process control of batch processes based on threeway models [J ]. Chemical Engineering Science,2000, 55(2): 1225-1235.
  • 2Chen J, Liu K. On-line batch process monitoring using dynamic PCA and dynamic PLS models [J].Chemical Engineering Science, 2002, 57 (4): 63-75.
  • 3Dong D, McAvoy T J. Batch tracking via nonlinear principal component analysis [J]. AIChE Journal,1996, 42(2): 2199-2208.
  • 4Kourti T, MacGregor J F. Multivariate SPC methods for process and product monitoring[J]. Journal of Quality Technology, 1996, 28(4): 409-427.
  • 5Simoglou A, Martin E B, Morris A J. Multivariate statistical process control of an industrial fluidizedbed reactor[J]. Control Engineer Practice, 2000, 8(8): 893-909.
  • 6赵立杰,王纲,孙云秋,李元.非线性PCA方法在间歇过程性能监视和故障诊断中的应用[J].沈阳化工学院学报,2000,14(1):62-68. 被引量:9

二级参考文献8

共引文献8

同被引文献32

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部